#### Training Program (23-24 Dec 2022)

on

Design on waste water treatment technology, equipment and SBR & MBBR system with Tertiary treatment technology

> Ashok Srivastava M: +91 8130781222, Email: ashoknapier@gmail.com

# SELF INTRODUCTION

- **Educational Qualifications** Post Graduate in Polymer Engineering, & PGD in Business Management
- Experience Worked with many national & international companies as a business head and country head.
- Promoted technological products and system while working with leading multinational organizations in India, Canada, Singapore & Middle East like Napier-Reid Canada, Hyflux Singapore, SPML Infrastructure as a business head and country head.
- Presently associated with Aqwise Wise Water Technologies Ltd. as a Country Head to promote various technologies for water & waste water application like MBBR, IFAS, SBR, Anaerobic Technology etc.
- Effectively imparted 20+ trainings on water & waste water, UF Technology, RO Technology, Water Recycling, SBR technology & Sludge Management and attended 40+ seminars worldwide as a Speaker & Delegate.
- Merits of having various Papers Published on latest techniques in membrane technology, SBR Technology, UF Technology and various sludge treatment in water & Waste Water in various magazines & journals

# TOPICS TO BE COVERED

- Introduction to Wastewater Treatment Plant
- Type of wastewater, characterization, wastewater chemistry
- Design basis, fundamentals, treatment process, etc.
- Primary Treatment Processes:
- Screens, Grit removals, Oil & Grease removal system
- Coagulation & flocculation, sedimentation, chemical dosing, etc.

### Cont..

- Secondary Treatment Processes:
- Introduction to biological treatment processes
- Aeration, ASP treatment & technology and process .
- Nitrification & Denitrification
- Clarifier, Equalization, Basic design calculation
- Basic engineering & design for ASP, SBR & MBBR technology & Process Basic design calculations

## Cont...

- Disinfections
- Basics of Filtrations
- Basics of Membrane technology
- Drinking water standards and guidelines and process
- O&M practices

# WATER CRISIS

- GLOBAL
- QUANTITY & QUALITY



# **REASONS FOR WATER CRISIS**

- INAPPROPRIATE USE OF SURFACE WATER RESOURCES
- CHANGE IN HYDROLOGICAL CYCLE DUE TO HUMAN INTERVENTION
- OVER EXPLOITATION OF GROUNDWATER
- WATER WASTAGE AND POLLUTION

### CURRENT WATER RESOURCE SCENARIO IN INDIA

Expanding Industrial Demand

Current - 167 Billion cubic metres 2025 - 228 Billion cubic metres 2050 – 500 Billion M3

Soaring Costs – production and treatment cost

- Rising Tariffs across the world
- Water Loss : 30 to 40%

### **BASIC WATER FACTS (INDIA)**

#### INDIA HAS 18% OF WORLD'S POPULATION

BUT

#### IT HAS ONLY 4% OF THE WORLD'S WATER RESOURCES



# India Water Scenario

Post-independence, the <u>population</u> of the country has increased almost nearly fourfold. The economy of the country is also increasing due to <u>urbanization and industrialization</u>.

India is ranked 120th among 122 countries in a global water quality index. Nearly 70% of the country's <u>water is contaminated</u>. <u>Just 30%</u> of wastewater undergoes any sort of treatment.

2



NITI Ayog says - Twenty-one cities in India including Delhi, Bengaluru, Chennai and Hyderabad, affecting around 100 million people.

3

Per Capita Water Availability has decreased and there is <u>clear deficit</u> of fresh water even for <u>drinking</u> <u>purpose</u>.

4

### CURRENT WATER RESOURCES SCENARIO IN INDIA

#### ANNUAL PER CAPITA AVAILABILITY OF WATER (IN CUBIC METERS)

6,042 1,816 1,545 1,140 640



# **Global Water Security**

- Freshwater availability (per capita) is decreasing
- Increasing risks of 'slow-onset disasters' such as water scarcity, droughts and famine due to climate change and mismanagement.
- Promoting water-use efficiency, water recycling and rainwater harvesting is becoming increasingly important.



## Water Cycle



## SOURCES FOR WATER RECYCLE

- RAIN WATER
- **STORM WATER**
- SEWAGE WATER
- INDUSTRIAL WASTEWATER

## SOURCE of water QUALITY

RAIN WATER – PURE UNCONTAMINATED

 STORM WATER – LOW CONTAMINATION Suspended Solids Oil & Grease Agricultural Runoffs Chemicals

# SOURCE of water QUALITY

#### SEWAGE – LOW TO MEDIUM CONTAMINATION

Physical

Organic



## SOURCE QUALITY

- INDUSTRIAL WASTEWATER
- MEDIUM TO VERY HIGH CONTAMINATION Physical Chemical Organic



#### How is waste water generated ?



# PARAMETERS

### **PHYSICAL**

- Temperature
- Color
- Taste & Odor
- Suspended Solids
  Organic (volatile), Inorganic
  Settelable, Floating
- Oil & Grease (Free & Emulsified)

### PARAMETERS

#### **CHEMICAL**

- ► pH
- Acidity/Alkalinity
- Total Dissolved Solids (TDS)
- Chlorides
- Sulfates
- Total Nitrogen
- Total Phosphorus
- Heavy Metals : Cr, Ni, Pb, Zn etc.
- Toxic Chemicals : AS, CN etc.
- Chemical Oxygen Demand (COD)

### PARAMETERS

#### **BIOLOGICAL**

- Biochemical Oxygen Demand (BOD)
- Bacterial Counts



# BASIC UNDERSTANDING Of Waste Water

# QUANTITY

#### <u>SEWAGE</u>

- There are considerable variations in the quantity of sewage during the day. with low flows at night. Day to day variations are relatively small
- The variation in sewage quantity is measured as the "peak factor". This factor is high for smaller communities and reduces as the communities grow larger.

#### INDUSTRIAL EFFLUENT

- Industrial wastewaters, on the other hand, have very large variations hour to hour and day to day. It is, hence, necessary to measure the wastewater flows over a reasonable period of time to determine the design flows for various treatment units.
- A rough estimate of quantity of sewage and industrial wastewaters can be obtained from the data on water supply.

# QUALITY

SEWAGE: The quality of sewage has relatively less variations than industrial wastewaters. But still it is better to analyze as many samples as possible as obtain as much comprehensive data as possible.

INDUSTRIAL EFFLUENT :For industrial wastewaters it is absolutely imperative that data is collected through analysis of a large number of samples or through analysis of data collected by the client over a reasonable period of time.

### **TYPICAL CHARACTERISTICS OF RAW SEWAGE**

| Parameter                                                      | Concentration mg/l |
|----------------------------------------------------------------|--------------------|
| BOD                                                            | 100 - 400          |
| COD                                                            | 200 - 800          |
| Suspended solids                                               | 100 - 500          |
| Total nitrogen (as N)                                          | 10 – 50            |
| Ammonia (NH <sub>3</sub> as N)                                 | 10 – 30            |
| Organic phosphorus (as P)                                      | 1 – 2              |
| Inorganic phosphorus (as P)                                    | 3 – 10             |
| Oils, fats and grease                                          | 50 - 100           |
| Total inorganic constituents (Na,<br>Cl, Mg, S, Ca, K, Si, Fe) | 100                |
| Heavy metals (Cd, Cr, Cu, Pb, Hg, Ni, Ag, Zn)                  | < 1mg/l each       |

#### CHARACTERISTICS OF COMMON WASTEWATERS

| Parameter               | Domestic<br>Sewage | Fresh<br>Milk       | Milk<br>Effluent         | Brewery<br>Effluent       | Abattoir<br>Effluent     | Pharma*<br>Effluent       |
|-------------------------|--------------------|---------------------|--------------------------|---------------------------|--------------------------|---------------------------|
| BOD – mg/l              | <500               | 2 x 10 <sup>6</sup> | 2 – 5 x 10 <sup>3</sup>  | 5 – 15 x 10 <sup>3</sup>  | 2 – 5 x 10 <sup>3</sup>  | 5 – 10 x 10 <sup>3</sup>  |
| COD – mg/l              | 300 – 800          | 3 x 10 <sup>6</sup> | 3 – 10 x 10 <sup>3</sup> | 20 – 50 x 10 <sup>3</sup> | 3 – 10 x 10 <sup>3</sup> | 20 – 60 x 10 <sup>3</sup> |
| Suspended Solids – mg/l | 100 - 500          |                     | >1000                    | >1000                     | >2000                    |                           |
| Total N – mg/l          | 20 – 50            |                     | 60 - 250                 | 60 - 250                  | 60 - 150                 | 20 – 250                  |
| Total P – mg/l          | 2 – 15             |                     | 10 – 50                  | 10 – 50                   | 10 – 30                  | 2 – 150                   |
| FOG – mg/l              | 50 – 200           | >2000               | >200                     |                           | >1200                    |                           |
| рН                      | 6.5 - 8.8          | 7.5                 | 2 - 12                   | 5 – 8.5                   | 6 – 8.5                  | 2 - 12                    |

\* After solvent recovery

### STP Limits as per NGT Guideline

|                  | land de la companya d |           |
|------------------|-----------------------------------------------------------------------------------------------------------------|-----------|
| Parameter        | Unit                                                                                                            | Limit     |
| рН               | s.u                                                                                                             | 5.5 – 9.0 |
| BOD              | mg/L                                                                                                            | 10        |
| тѕѕ              | mg/L                                                                                                            | 20        |
| сор              | mg/L                                                                                                            | 50        |
| Total Nitrogen   | mg/L                                                                                                            | 10        |
| Total Phosphorus | mg/L                                                                                                            | 1         |
| Fecal Coliform   | MPN/100 mL                                                                                                      | 230       |

### Effects of Pollutants

| Test        | Measures                                | Desirable Limit | Effect on Receiving Water                                                                    |
|-------------|-----------------------------------------|-----------------|----------------------------------------------------------------------------------------------|
| Parameters  |                                         |                 |                                                                                              |
| рН          | Acidity/alkalinity                      | 6.5-8.0         | Acidic/alkaline pH affects/kills<br>aquatic flora and fauna                                  |
| Temperature | Thermal Condition -<br>hot/cold         | Ambient+/- 5C.  | Affects/kills aquatic flora and fauna                                                        |
| DO          | DO level                                | > 2-4 mg/L      | Low DO is harmful to aquatic<br>organisms, flora and fauna and<br>may kill living organisms. |
| Toxicity    | Toxicity caused by metals and chemicals | Low             | High conc kills aquatic organisms, flora and fauna.                                          |

# **Effects of Pollutants**

| Test Parameters     | Measures                       | Desirable Limit        | Effect on Receiving Water                                                          |
|---------------------|--------------------------------|------------------------|------------------------------------------------------------------------------------|
| COD                 | Organics                       | < 50-250 mg/L          | Increases bacterial growth;<br>Depletes DO                                         |
| BOD                 | Degradable Organics            | <10-30 mg/L            | Increases bacterial growth;<br>Depletes DO                                         |
| TSS                 | Suspended/ Insoluble<br>Solids | < 10-30 mg/L           | Increase suspended solid conc,<br>increases BOD, depletes DO                       |
| O&G                 | Oil and grease                 | < 10 mg/L              | Increases BOD, Depletes DO,<br>Affects photosynthetic activity of<br>aquatic life, |
| Coliform            | Microbial Counts               | <100-400<br>MPN/100 mL | Affects Health                                                                     |
| Total Nitrogen      | Nutrients – Nitrogen           | < 3-10 mg/L            | Increases bacterial growth;<br>Depletes DO                                         |
| Total<br>Phosphorus | Nutrients –<br>Phosphorus      | <1 mg/L                | Increases bacterial growth;<br>Depletes DO                                         |

# TREATED EFFLUENT QUALITY

- Compliance standards as per CPCB/SPCB.
- Reuse/recycle standards/requirements



### **DEVELOPENT OF PROCESS FLOW DIAGRAM**



#### Preliminary Treatment for Waste water

### **DEVELOPENT OF PROCESS FLOW DIAGRAM**

From Preliminary Treatment



Oil & Grease Removal Sedimentation

Primary Treatment

### **DEVELOPENT OF PROCESS FLOW DIAGRAM**

From Primary Treatment

> Biological units and Clarification

Coagulation, Filtration, Activated Carbon, Chlorination Membrane Technologies

Disposal

/Recycle

Secondary & Tertiary Treatment

# TREATABILITY STUDIES

- Once the process flow diagram is prepared it is necessary to determine the efficacy and efficiency of the various unit process in the laboratory and if necessary at pilot scale.
- This may not be necessary for sewage treatment if only compliance is required.
- For tertiary treatment, however, studies should be carried out.
- For industrial wastewaters it is absolutely essential.

# EQUALIZATION

- Generally equalization is not needed in sewage treatment plants. For industrial wastewaters, however, equalization is the most important unit process.
- The industrial wastewater varies from hour to hour in quantity and quality which affects all the subsequent unit processes in terms of their efficiency.

# NEUTRALISATION

- A pH range of 6.0 to 8.5 is most suited to provide protection to aquatic life
- PH affects the solubility of organic matter and availability of BOD
- PH affects the toxicity levels of metals
# COAGULATION

- Stable Colloidal Suspensions
- Coagulants
  - Aluminum salts, Ferrous and Ferric salts Sodium aluminate, Poly electrolytes



### COAGULATION

#### Jar Test to

- Optimize Coagulant
- Optimize Dosage
- Optimize pH

### **BIOLOGICAL PROCESSES**

- Aerobic and Anaerobic
- Suspended Growth and Immobilized Growth



### TREATMENT PROCESSES

- 1. Screening
- 2. Grit Removal –for Sewage
- 3. Oil & Grease Removal
- 4. Equalization
- 5. Coagulation
- 6. Sedimentation
- 7. Biological Treatment
- 8. Tertiary Treatment
- 9. Sludge Treatment



#### EQUALISATION BASIN





BAR SCREEN



#### GRIT CLASSIFIER

#### PRIMARY CLARIFIER





**AERATION TANK** 

#### SECONDARY CLARIFIER



#### PRIMARY TREATED WATER TANK

#### **Secondary Treatment (biological)**







# **A** Preliminary/Primary Treatment

|        |                          |                                        | and the second second |  |  |  |
|--------|--------------------------|----------------------------------------|-----------------------|--|--|--|
|        | Pollutant Removal        | Equipment/Process                      |                       |  |  |  |
| Solids |                          | Screens                                | ]                     |  |  |  |
|        |                          | Clarifier                              | 1                     |  |  |  |
|        |                          | Sedimentation Tank                     | 1                     |  |  |  |
|        |                          | DAF                                    |                       |  |  |  |
|        |                          | Coagulation & Flocculation             | ]                     |  |  |  |
|        | Grit                     | Grit Chambers                          |                       |  |  |  |
|        | Oil & Grease             | Grease Traps                           |                       |  |  |  |
|        |                          | Surface Skimmer/Oil Separator          | ]                     |  |  |  |
|        |                          | DAF                                    | ]                     |  |  |  |
|        | Flow & Load Equalisation | Equalization Tank                      | ]                     |  |  |  |
|        | pH/Acidity/Alkalinity    | Neutralization Tank, Chemical Addition |                       |  |  |  |
|        | Heavy Metals             | Precipitation System                   |                       |  |  |  |
|        | Hardness Removal         | Precipitation                          |                       |  |  |  |
|        | VOCs                     | Air Stripping                          | 51                    |  |  |  |

#### A Biological Treatment Technologies

| Technology            | BOD | BOD +<br>Nitrification | BOD + N<br>Removal | P<br>Removal |
|-----------------------|-----|------------------------|--------------------|--------------|
| CMAS                  | X   | X                      |                    |              |
| Plug Flow             | X   | X                      |                    |              |
| Step Feed             | X   | X                      | Х                  |              |
| Contact Stabilization | X   |                        |                    |              |
| Separate Sludge       | X   | X                      | X                  |              |
| Extended Aeration     |     | x                      |                    |              |
| SBR                   | X   | X                      | Х                  | Х            |
| MLE                   |     |                        | X                  |              |
| 4-stage               |     |                        | X                  |              |
| 5-Stage               |     |                        | Х                  | Х            |

#### **A Biological Treatment Technologies**

| Technology                | BOD | BOD +<br>Nitrification | BOD + N<br>Removal | P Removal |
|---------------------------|-----|------------------------|--------------------|-----------|
| MBR                       | X   | X                      | Х                  | X         |
| MBBR/IFAS                 |     | X                      | X                  | X         |
| Oxidation Ditch           | X   | X                      | Х                  | Х         |
| RBC                       | X   | X                      |                    |           |
| UASB                      | X   |                        |                    |           |
| Trickling Filter/Biotower | X   | X                      |                    |           |
| Anaerobic Filter          | X   |                        |                    |           |
| Anaerobic Contact Process | X   |                        |                    |           |
| Lagoons                   | X   | X                      |                    |           |

#### **Tertiary Treatment Technologies**

Α

| Technology                            | Pollutant Removed                 |  |  |
|---------------------------------------|-----------------------------------|--|--|
| Filtration                            | Solids                            |  |  |
| Carbon Filter                         | COD, Organics, Chlorine           |  |  |
| Disinfection                          | Pathogens                         |  |  |
| Chemicals & Dosing                    | For Chemical Reactions            |  |  |
| <b>Chemical Precipitation</b>         | Inorganics, Heavy Metals          |  |  |
| <b>Coagulation &amp; Flocculation</b> | Solids                            |  |  |
| Oxidation                             | Toxics, Inorganics, organics, COD |  |  |
| Ion Exchange                          | TDS, specific Ions, Hardness      |  |  |



#### **Membrane Technologies**

| Technology      | Pollutant Removed           |
|-----------------|-----------------------------|
| Microfiltration | Solids, Microorganisms      |
| Ultrafiltration | Solids, Microorganisms      |
| Nanofiltration  | Solids, Microorganisms      |
| Reverse Osmosis | TDS, Solids, Microorganisms |

Note: MBR is considered under Biological Treatment

#### **Sludge Treatment Technologies**

a

| Equipment/Technology                                                                  | Function                         |  |
|---------------------------------------------------------------------------------------|----------------------------------|--|
| Thickener/ Belt Thickener                                                             | Thickening                       |  |
| Belt Press/Filter Press/Centrifuge                                                    | Dewatering                       |  |
| Aerobic Digestion                                                                     | VSS Destruction, Stabilization   |  |
| Anaerobic Digestion                                                                   | Class B Biosolid                 |  |
| Thermal Hydrolysis Process<br>/Drying/Pasteurization/<br>Thermophilic Digestion/Other | Pathogen Free – Class A Biosolid |  |



### SCREENING

- Bar/Coarse screens
- Medium screens
- Fine screens
- Manually cleaned
- Mechanically cleaned
- Automatic cleaning

#### **Unit Processes - Screens**

#### Screens

- 1. Manual Bar Screen
- 2. Automatic Bar screen

#### Some examples are :

- 1. Screen mat
- 2. Rotary Drum Screen
- 3. Inclined rake screen
- 4. Screens with various gaps or spacing





### SCREENING



# DESIGN CRITERIA

Design flow Minimum number of units Openings : Coarse – Fine –

Velocities : Approach

Through open area

- Peak - 2

- 6 to 150 mm usually 50mm
- Less than 6 mm
- 0.45m/sec at average flow
- 0.6 to 1.2 m/sec at peak flow

not less than 0.3 m/sec at low flow

### SCREENING





# **GRIT REMOVAL**

- Grit is inorganic suspended matter
- Generally it is designed for particles with specific gravity of 2.65
- Could be simple rectangular tank or a mechanically scraped square tank (Detritor) and sometimes aerated
- A Classifier is used to separate the grit from organic matter



### **DESIGN CRITERIA**

Design flow-PeakMinimum number of units-2Simple horizontal flow Detention 45 to 90 seconds, usually 60 secondsHorizontal velocity-15 to 40 cm/sec at peak usually 30 cm/sec

Have to provide a velocity control device like Parshall Flume Square tanks Overflow rate - 700 m<sup>3</sup>/m<sup>2</sup>/day ( or use vendor design)

Classifier Use vendor design

### **GRIT REMOVAL**



### **OIL & GREASE REMOVAL**

Free Oil Removal : API, TPI / CPI, BELT SKIMMERS

Emulsified Oil Removal : Dissolved Air Floatation (DAF)

System incidentally reduces Suspended Solids alongwith Oil



### FREE OIL REMOVAL

Belt Skimmer and Slotted Pipe Design Basis: Oil and Grease content in Effluent Flow Selection of Belt material

Oil and Grease Chamber Design Basis: Flow Retention Time:30 Mins Length to Width Ratio:3:1 Calculation of Volume:(Flow x Retention) SWD:1m





#### TPI / API DESIGN

#### (Tilted plate separator / American petroleum institute)

#### API

|                                  | : | Peak / Average based on sequence   |
|----------------------------------|---|------------------------------------|
| Design flow                      |   |                                    |
| Minimum no. of units recommended | : | 2                                  |
| Horizontal velocity              | : | <pre>&lt;55 m/hr @ peak flow</pre> |
| Recommended L:W / D:W ratio      | : | Max 5:1 / Minimum 0.3 -0.5         |
| Maximum width recommended        | : | 6 m                                |
| Maximum depth recommended        | : | 2.5 m                              |
| Oil globule size removal         | : | 150 micron and above               |

| Parallel Plate Separator                   |   |                     |
|--------------------------------------------|---|---------------------|
| Perpendicular distance between plates      | : | 0.75-1.5 inches     |
| Angle of plate inclination from horizontal | : | 45-60°C             |
| Oil globule size removal                   | : | 60 micron and above |
| Oil removal / SS removal                   |   | 60-70% / 33-68%     |

#### DAF DESIGN

Design flow

Minimum no. of units recommended

Overflow rates

**Rising velocity** 

Air : Solid ratio

Recycle ratio

: Peak / Average based on sequence

: 2

- :  $28-100 \text{ m}^3/\text{m}^2/\text{day}$
- : 1.9-7 cm/min
- : 0.05-0.06 ml air / mg solids
- : 20–150%



# EQUALIZATION

As seen earlier, the study in the variation of quality would provide the criteria for the sizing of the Equalization Tank

- Use a batch fill and draw system
- Provide mixing through aeration grid
- Use the tank as neutralization unit

### EQUALIZATION



# DESIGN CRITERIA

- Generally detention time should be 8 hours with two tanks providing total of 16 hours
- Plants with very large flows may provide 4 hours each with 8 hours total
- Very small plants may go up to 24 hours for each tank
- Tanks are operated on "fill & draw" batch process with one filling while the other is emptying
- Mixing is provided by aeration grid laid on the floor
- Neutralization, if needed, is carried out in these tanks
- Highly acidic effluents should be received in a portion of the tank lined with acid resistant tiles/material – pre neutralization section

### **Equalization Tank**



# SEDIMENTATION

- Total Suspended Solids
  - Organic
  - Inorganic
    - Settleable
- Settling Velocity
- Overflow Rate
- Solids Loading

#### **PRIMARY CLARIFICATION**

From Grit Chamber



Primary Clarifier

To Secondary Treatment

Sludge for Treatment/Disposal

## **DESIGN CRITERIA**

| Design flow             | — | Average                     |
|-------------------------|---|-----------------------------|
| Minimum number of units | _ | 1                           |
| Detention time          | _ | 1.5 to 2.5 hrs. Usual 2 hrs |
| Overflow rate           | _ | 25 to 50 m³/m²/day          |

Usual 40 m<sup>3</sup>/m<sup>2</sup>/day for sewage

 $24 m^3/m^2/day$  for industrial wastewater

#### Expected removals TSS BOD

45 to 70 %
25 to 45 %



# COAGULATION

- Need to mix coagulant rapidly to quickly disperse the coagulant – Flash mixing
- Increased opportunity for contact Flocculation
- Sedimentation of flocs
- Flocculation and clarification may be combined Clariflocculator



Sludge for treatment/disposal


# **DESIGN CRITERIA**

Flash MixerDesign flowAverageNumber of units1Detention time30 secondsMixing by mechanical agitator - APPROX. 1000 RPMStatic mixers and other types of mixers also may be used.

FlocculatorDesign flowAverageNumber of units1Detention time30 minutesPaddle agitator for slow mixing -11 RPM (0.3 TO<br/>0.9M/SEC)

# **DESIGN CRITERIA**

Clarifier Design flow Number of units

Average 1 2 for large plants

Overflow rate For Primary Settling Only

25- 30 m<sup>3</sup>/m<sup>2</sup>/day (Avg) 50-60 m<sup>3</sup>/m<sup>2</sup>/day (Peak)

For Primary Settling followed by Secondary treatment

35- 50 m<sup>3</sup>/m<sup>2</sup>/day (Avg) 80-120 m<sup>3</sup>/m<sup>2</sup>/day (Peak)

Expected removals TSS 80 to 90 % BOD 10 to 30 % Wherever treatability data is available use design criteria from such studies

### a Coagulation and Flocculation



#### **Biological Treatment Technologies**

#### Anaerobic Treatment Technologies

#### Aerobic Treatment Technologies

#### **Biological Wastewater Treatment**

To remove the suspended solids & the dissolved organic load from the wastewater by using microbial populations

The microorganisms are responsible for the degradation of the organic matter and can be classified into:

> aerobic (require oxygen for their metabolism)

anaerobic (grow in absence of oxygen)

#### **Objective of Biological Treatment**

#### The Removal of:

Organic Matter (BOD / COD)
Suspended Solids
Ammonical Nitrogen
Nitrates & Phosphates
Pathogens

#### The Aerobic process

By aerobic micro-organisms In the presence of molecular oxygen

Organic Matter + Oxygen = Carbon-dioxide + Water + New Cells

#### The Aerobic process

Aerobic process



Aerobic wastewater breakdown and by-products produced:

Organic Matter + Aerobic Microorganisms + O<sub>2</sub>



More Micro-organisms +  $CO_2$  +  $H_2O$  + Energy

### PRE CONDITIONS OF AEROBIC TREATMENT

- Food for Bacteria (Organic matter / BOD)
- Oxygen
- Temperature
- TDS
- Favourable pH
- 0 & G < 5 mg/l
- Heavy metals / Toxic chemicals Nil /Traces
- Nutrients

#### **AEROBIC BIOLOGICAL TREATMENT**

- Oxidation Ponds
- Aerated Lagoons
- Biological Filters
  - Trickling Filters
  - Rotating Biological Contactors
  - Biological Aerated Filters

- Activated Sludge
  - SBR
  - Moving Bed Biological Reactors
  - Membrane Biological Reactors
  - Biological Nutrient Removal



#### ACTIVATED SLUDGE PROCESS – LOADING



#### ACTIVATED SLUDGE PROCESS- OXYGEN



#### **ACTIVATED SLUDGE PROCESS – AERATION**

- Can be either
  - Mechanical Surface
    - Low Speed 46 RPM
    - High Speed
  - Diffused Air
    - Coarse Bubble
    - Fine Bubble
  - Pure Oxygen



### **MECHANICAL SURFACE AERATION**





# **DIFFUSED AIR AERATION**

- Coarse or Fine Bubble
- Submerged header and lateral system for Air Distribution
- Ceramic dome or membrane diffusers



### **DISC DIFFUSER SYSTEM**



FIG: Disc Diffuser Installation (Photo Courtesy: Environmental Dynamics, Inc., U.S.A.)

### **TUBULAR DIFFUSER SYSTEM**



FIG: Tubular Diffuser Installation (Photo Courtesy: Environmental Dynamics, Inc., U.S.A.)

#### AIR REQUIREMENT – BLOWER & FINE BUBBLE DIFFUSER SYSTEM (RULE OF THUMB)

Blower Capacity in m<sup>3</sup>/hr =  $\frac{\text{Kg BOD * X}}{1.2 * 0.21 * \alpha * \beta * 24 * \eta}$ 

- X Kg oxygen / kg BOD considered (1-2 depending on wastewater strength)
- 1.2 Density of air in kg /  $m^3$
- 0.21 Content of oxygen in air, %
- Ratio of mass transfer coefficient in wastewater to tap water, Typical : 0.6.-0.9 (For Diffused Aeration : 0.4 -0.8 & Mechanical Equipment : 0.6-1.2)
- $\beta$  A saturation factor used to correct for DO in wastewater Typical : 0.7-0.95
- η Oxygen Transfer Efficiency
   Typical : 5-6% per m of submergence depth

## TRANSFER EFFICIENCY



| Aeration Device           | Oxygen Transfer Rate,<br>kgO <sub>2</sub> /kWh |
|---------------------------|------------------------------------------------|
| Fine bubble diffusers     | 2.0 - 2.5                                      |
| Coarse bubble diffusers   | 0.8 - 1.2                                      |
| Vertical shaft aerators   | up to 2.0                                      |
| Horizontal shaft aerators | up to 2.0                                      |

Oxygen transfer coefficient is affected by the following factors:

• temperature

0

- mixing intensity
  - tank geometry
- characteristics of the water

### **Aeration Diffuser**



### Aeration Cont...





# SECONDARY CLARIFICATION

Design on the basis of solids loading

Solids Loading Rate Conventional -100 to 150 kg solids/m<sup>2</sup>/day Extended -24 to 120 Kg solids/m<sup>2</sup>/day (Note: The flow includes the return sludge flow)

Hydraulic Loading Rate Conventional – 15 to 50 m<sup>3</sup>/m<sup>2</sup>/day Extended – 8 to 35 m<sup>3</sup>/m<sup>2</sup>/day (Note: The flow includes the return sludge flow)





#### ADVANCED AEROBIC BIOLOGICAL TREATMENT

- Membrane Bioreactor (MBR)
- Sequential Batch Reactor (SBR)
- Moving Bed Bioreactor (MBBR)



# **Activated Sludge**

Activated sludge refers to a mass of microorganisms cultivated in the treatment process to breakdown organic matter into carbon dioxide, water, and other inorganic compounds.

Definition by World Bank http://water.worldbank.org/shw-resourceguide/infrastructure/menu-technicaloptions/activated-sludge

# ACTIVATED SLUDGE PROCESS (ASP)

- Aerobic suspended growth process most widely used
- Process consists of Aeration Tank, Secondary Clarifier and system for returning and wasting sludge.
- Sequencing Batch Reactor (SBR) and Membrane Bio-Reactor (MBR) are fundamentally activated sludge processes

#### PROCESS DESIGN CONSIDERATION IN ASP

- Effluent Characteristics
- Selection of the reactor type
- Applicable kinetics relationships
- Solid retention time and loading criteria to be used
- Sludge production

- Oxygen requirement and transfer (Mixing energy)
- Nutrients requirements
  - Other chemical requirements
  - Settling characteristics

## **IMPORTANT DESIGN ASPECTS – ASP**

- ➤ F / M
- ► HRT / SRT
- Oxygenation / Mixing
- Return sludge

# **CONTROLLING PARAMETERS – ASP**

- Organic loading rate
- > Oxygen supply
- Control and operation of the final settling tank
- Nutrient Availability (BOD:N:P: :100:5:1)

# **BASIC COMPONENTS OF ASP**



Excess Sludge for Treatment and Disposal



# DESIGN CRITERIA

#### Aeration tank

- Design flow
- Number of units
- Food: Microorganism Ratio(F:M)
- Conventional
- Extended Aeration –
- Mixed Liquor Suspended Solids (MLSS)-
- Estimated excess sludge removed -
- Nutrients BOD:N:P –

- Average
- 1 (2 preferred)
- 0.05 to 0.30
  - 0.2 to 0.4
  - 0.05 to 0.15
  - S)– 1500 to 5000 mg/L
    - 0.10 to 0.30 kg/kg BOD

100:5:1

#### Activated Sludge Process-Aeration Tank

Effluents and mixed bacteria aerated in tank

- Bacteria are encouraged to grow by providing Oxygen, Food(BOD), Nutrients(N,P)
- Desired temperature is maintained
- Required retention time is provided

## **AERATION TANK**

- Oxygen requirement 1.0 2.0 kg/kg BOD
- Aerators Mechanical or Diffused
   Oxygen transfer rate Depends on vendor guarantee
   (Safe is to assume 1kg of Oxygen/connected horse power)
- Solids Retention Time (SRT)
- Conventional-3 to 15 daysExtended aeration-20 to 40 daysReturn Sludge volume as % of influent -25 to 100

*Wherever treatability data is available use design criteria from such studies* 

#### DETERMINING AERATION TANK VOLUME

 $V = \frac{Q* BOD}{MLSS* F/M*1000}$ 

Where

| V    | = | Volume of the aeration tank in m <sup>3</sup> |
|------|---|-----------------------------------------------|
| Q    | = | Flow rate in m <sup>3</sup> /day              |
| BOD  | = | Biological oxygen demand in mg/l              |
| MLSS | = | Mixed – liquor suspended solids in g/l        |
| F/M  | = | Food to microrganism ratio in d <sup>-1</sup> |



### **SLUDGE VOLUME INDEX (SVI)**



The sludge volume index (SVI) is the volume in milliliters occupied by 1 g of a suspension after 30 min settling.

For routine operation, sludge settleability is determined by use of the sludge volume index (SVI) = SV 30 min (ml/l)\* 1000 / MLSS (mg/l)

## SLUDGE VOLUME INDEX (SVI)

-SVI typically is used to monitor settling characteristics of activated sludge and other biological suspensions

- Although SVI is not supported theoretically, experience has shown it to be useful in routine process control

| SVI : 50 –100  | Excellent         |
|----------------|-------------------|
| SVI : 100– 150 | Good              |
| SVI: 150-250   | Just satisfactory |
| SVI > 300      | Poor              |
|                |                   |

- The microbial biomass produced in the aeration tank must settle properly from suspension so that it may be wasted or returned to the aeration tank
- Good settling occurs when the sludge microorganisms are in the endogenous phase, which occurs when carbon and energy sources are limited
### SVI Cont.....

Filamentous growth

A common problem in the activated sludge process is filamentous bulking, this caused when excessive growth of filamentous microorganisms. The filaments produced by these bacteria interfere with sludge settling and compaction.

Filamentous bacteria are able to predominate under conditions of low dissolved oxygen, low nutrients and high sulfide levels

#### Sludge Retention Time (SRT) in Bio-Reactor

VX

SRT =

(Q-Qw)Xe+ QwXR

Where:

V= Volume, m3

X = Biomass concentration, mg/m3

Q= Inlet Flow rate, m3/sec

Qw= Waste Sludge flow rate, m3/sec

Xe= Concentration of biomass in the effluent, mg/m3 XR=Concentration of biomass in the return line from clarifier, mg/m3

## **BIOLOGICAL NUTRIENT REMOVAL**

Biological Nutrient Present : Nitrogen & Phosphorous

Impacts of Nutrient & Necessity for its Removal

- Increases aquatic growth (algae)
- Increases DO depletion
- Causes NH<sub>4</sub> toxicity
- Causes pH changes

Reduction / Removal Processes is required

– Nitrification / Denitrification : Separate or Simultaneous

## NITRIFICATION

- $\operatorname{NH}_4^+ \rightarrow \operatorname{Nitrosomonas} \rightarrow \operatorname{NO}_2^-$
- $\mathbb{NO}_2^- \rightarrow Nitrobacter \rightarrow \mathbb{NO}_3^-$

### Features

- Aerobic process
- Control by SRT (4 + days)
- Uses oxygen  $\rightarrow$  1 mg of NH<sub>4</sub><sup>+</sup> uses 4.6 mg O<sub>2</sub>
- Depletes alkalinity → 1 mg NH<sub>4</sub><sup>+</sup> consumes
  7.14 mg alkalinity

 Low oxygen and temperature = Difficult to operate



### NITRIFIER MINIMUM AEROBIC SRT VARIES WITH TEMPERATURE



## DENITRIFICATION

- ▶ Using methanol as carbon source:  $6 \text{ NO}_3^- + 5 \text{ CH}_3\text{OH} \longrightarrow 3N_2 + 5 \text{ CO}_2 + 7 \text{ H}_2\text{O} + 6 \text{ OH}^-$
- ► Using an endogenous carbon source (Ethyl Cyanoacetate):  $C_5H_7NO_2 + 4.6 NO_3^- \longrightarrow 2.8 N_2 + 5 CO_2 + 1.2 H_2O + 4.6 OH^-$

Requirements :

- Recycle flow rich in NO<sup>-</sup><sub>3</sub>
- Fresh feed with Carbon source

### DENITRIFICATION WITH SUPPLEMENTAL CARBON





# DENITRIFICATION

### Denitrification is Controlled by Mixed Liquor Recirculation



# DENITRIFICATION

### Size based on Anoxic SRT

- Typically 1 to 2 days (in some cases upto 4 days) depending on temperature
- Effective Denitrification
  - Sufficient Anoxic Volume (Anoxic SRT)
  - Sufficient Carbon
  - Sufficient mixed liquor recirculation

## PHOSPHORUS REMOVAL

### Biological



Continued ...

## PHOSPHORUS REMOVAL

### Chemical



# EFFECTIVE PHOSPHORUS REMOVAL

### Size based on SRT

- Typically 7 to 10 days depending on temperature
- Effective Denitrification
  - Sufficient Anaerobic Volume (Anaerobic SRT)
  - Sufficient influent carbon
  - Competition between denitrification and phosphorous removal bacteria
- Sensitive to influent carbon
- Unstable process

# **BIOLOGICAL SLUDGE**

- ALL Biological Treatment Processes produce sludge
- Biological Sludge comprises C, N, P and other trace elements
- Usually contains high proportion of water
  - 1 3% un–thickened
  - ~ 20% after centrifuge of filter belt press
  - 30 40% after plate and frame press
  - >80% after drying

- Sludge can be biologically active
- Can contain bacteria and viruses

# **Sludge Volume Calculations**

- Biological Sludge Production (Example with 1.4 mld STP)
- $SP_B = ADF \times Y \times (BOD_{in} BODout) / 1000 = 1400 \times 0.7 \times (300 10) / 1000$
- $\mathbf{b}$  = 284 kg/day
- ADF Daily Flow, m<sup>3</sup>/d
- Y Sludge yield, 0.7 kg dry sludge generated per kg of BOD removed
- 1000 Conversion, g/kg
- Chemical Sludge Production
- $SP_{C} = 0 \text{ kg/day}$

### Cont...

#### Total Sludge Production

Total Sludge Production SP = SP<sub>B</sub> + SP<sub>C</sub> = 284 + 0 = 284 kg/day

#### Sludge Waste Rate

Assume 0.85% solid content in sludge layer of SBR reactor when sludge settles, daily sludge waste rate:

$$Q_{WAS} = SP / 0.0085 / 1000$$
  
= 284 / 0.0085 / 1000 = 33.41 m<sup>3</sup>/day

#### **Sludge Treatment**



# SLUDGE MANAGEMENT

Sludge Management has two components

- Volume Reduction
- Treatment

Volume Reduction

- Gravity Thickening
- Drying
- De-watering

Treatment Chemical/Aerobic/Anaerobic digestion

## **DESIGN CRITERIA**

Gravity Thickening Number of units Solids loading (Combined primary &

Waste Activated Sludge

Overflow rate

Sludge Drying Beds Drying period Sludge layer Total depth of bed

25 to 70 kg/m<sup>2</sup>/day

1

Would thicken 0.5–1.5 % sludge to 4 to 6%

6 to 12  $m^3/m^2/day$ 

10 days 30 cm 1 m

# DESIGN CRITERIA

#### Dewatering

Rotary Drum Filter
 Number of units
 1 (for large plants minimum 2)

Design criteria is normally based on solids loading. Should be obtained from the vendor.

#### Centrifuge

Number of units 1 (for large plants minimum 2)

Design criteria is normally based on solids loading. Should be obtained from the vendor.

The primary and waste activated sludges could be treated to 16 to 24% solids

# **DESIGN CRITERIA**

Belt Filter Press
 Number of units
 1 (for large plants minimum 2)

Sludge loading rate90 to 680 kg/m/hourCake solids18 to 28%(Primary and waste activated sludge)

Recessed Plate Filter Press / Vacuum Filter Design data to be obtained for the vendor



### **SLUDGE TREATMENT**

- Chemical Stabilization Lime Treatment
- High Rate Anaerobic Digestion
  Number of Units
  Loading Rate
  1.0
  - 1 (for large plants 2)
  - 1.6 to 4.8 kg Volatile solids/cum/day

SRT HRT - 20 days



### **SLUDGE TREATMENT**

Aerobic Digestion
 Number of Units

Loading Rate

SRT Oxygen

- 1 (for large plants minimum 2)
- -1.6 to 4.8 kg Volatile solids/cum/day
  - 40 days
  - 2.3 kg/kg VSS



# SBR TECHNOLOGY



### Conventional Waste water Treatment Plant



### SBR Technology based Treatment Plant.



## **SBR Process & Operation**

- A sequencing batch reactor (SBR) is a variation of the activated sludge process.
- SBR is a batch process with intermittent discharge, while conventional activated sludge process is a continuous process with uninterrupted feed and discharge
- Each reactor, through a time cycle, provides all of the processes of activated sludge treatment (biological reactions and water/solid separation) in one reactor.
- SBR tank carries out the functions of equalization, aeration and sedimentation in a time sequence rather than in the conventional space sequence of continuous-flow systems.

- Sequencing batch reactor (SBR) process is a fill-and-draw reactor with complete mixing during the batch reaction step
- SBR is a time-oriented system where each tank is filled for a discrete period of time and then operated as a batch reactor
- SBR operation is consists of five steps viz. Fill, React, Settle, Draw, and Idle phase
- SBR uses multiple steps in the same tank to take the place of multiple tanks in a conventional treatment system
- A typical SBR cycle time consists of about 4 to 6 hours.
  Fill & React : 25% + 25%, Settle: 25%, Draw or Decant: 25%,



Advantages of SBR

- Equalization, primary clarification (in most cases), biological treatment, and secondary clarification can be achieved in a single reactor vessel
- Operating flexibility and control
- Minimal footprint
- Very high reduction rate for N & P
- Potential capital cost savings by eliminating clarifiers and other equipment

#### STEPS FOR SBR SIZING

- Input Sewage Flow in cum/day.
- Decide Cycle Time, C in hrs.
- Provide Min 2 nos. of basins.
- Calculate No of Cycles per day.
- Find out Filling Volume per cycle.
- Find out Total Reactor Volume .
- Assume suitable SWD and Find out Area.

Oxygen Requirement 1.2–2.0kg/kg BOD Detention time 12 to 20 hours

Sludge Formation Quantity 0.7 to 0.8 kg/kg BOD Strength =0.8 % SRT Normally 12- 20 days

Sludge Recirculation Pumps Capacity 50 –200% of feed flow Operation during fill and aeration (50% of time)

Sludge Wasting Pumps

Tank depth = sludge depth + 0.75 to1M safety + liquid volume of 2 hours of peak flow ( depend on cycle time)

### **SBR Sequence**







#### Fill The sewage starts filling the basin. and aeration

#### Aerate After filling, the basin is aerated and is also well mixed

#### Settle Air supply is stopped and the basin contents settle

#### Decant

The settled supernatant is decanted for treated

Note: All the four steps shown above take place in the same tank one following the other on a time interval basis but are shown separately in this figure for easy understanding.

# SBR Cycle

- Normally SBR Design in 4–6 hr cycle
- In 4 Hr cycle:
- First 2 Hr for Fill & Aeration
- One Hr for Settling
- One Hr for decanting



## **Typical SBR Process Parameter**

Table 5.57 Typical process parameters for SBR configurations (for unsettled sludge)

| S.<br>No.                                                                                         | Parameters       | Units                     | Continuous<br>Flow and<br>Intermittent<br>Decant | Intermittent<br>Flow and<br>Intermittent<br>Decant |  |
|---------------------------------------------------------------------------------------------------|------------------|---------------------------|--------------------------------------------------|----------------------------------------------------|--|
| 1                                                                                                 | F/M ratio        | d⁻¹                       | 0.05 - 0.08                                      | 0.05 - 0.3                                         |  |
| 2                                                                                                 | Sludge Age       | d                         | 15 - 20                                          | 4 - 20                                             |  |
| 3                                                                                                 | Sludge Yield     | kg dry solids/<br>kg BOD  | 0.75 - 0.85                                      | 0.75 - 1.0                                         |  |
| 4                                                                                                 | MLSS             | mg/L                      | 3,000 - 4,000                                    | 3,500 - 5,000                                      |  |
| 5                                                                                                 | Cycle Time       | h                         | 4 - 8                                            | 2.5 - 6                                            |  |
| 6                                                                                                 | Settling Time    | h                         | > 0.5                                            | > 0.5                                              |  |
| 7                                                                                                 | Decant Depth     | m                         | 1.5                                              | 2.5                                                |  |
| 8                                                                                                 | Fill Volume Base | -                         | Peak Flow                                        | Peak Flow                                          |  |
| 9                                                                                                 | Process Oxygen   |                           |                                                  |                                                    |  |
|                                                                                                   | BOD              | kg O <sub>2</sub> /kg BOD | 1.1                                              | 1.1                                                |  |
|                                                                                                   | TKN              | kg O <sub>2</sub> /kg TN  | 4.6                                              | 4.6                                                |  |
| $\star$ Ean Dhaomhannaic $< 1$ mat/L often his D ann and line stations in the $t/E = 3t - 4 + 3t$ |                  |                           |                                                  |                                                    |  |

\* For Phosphorous  $\leq$  1 mg/L, after bio-P removal, metal precipitant (Fe<sup>3+</sup> or Al<sup>3+</sup>) shall be added. Sludge yield factor and sludge age not applicable for primary settled sewage; typical primary TSS removal 60%, BOD 30%.

### Design Process for 45 MLD SBR Plant

| ~                                            |  |
|----------------------------------------------|--|
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
| 4                                            |  |
| 1431 m <sup>2</sup>                          |  |
| 127.5 m <sup>2</sup> /1000 m <sup>3</sup> /d |  |
| 3377 m <sup>3</sup>                          |  |
| 300 m <sup>3</sup> /1000 m <sup>3</sup> /d   |  |
| 1875 m <sup>3</sup> /h                       |  |
| 937 m <sup>3</sup> /h                        |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
| 3 h                                          |  |
|                                              |  |
|                                              |  |
| 3440 mg/l                                    |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |
|                                              |  |

Source: IIT Roorkee, August 2010
## 48 MLD SBR Decanter



# Why SBR ???

- Advantages of SBR vs. Conventional Activated Sludge
- Enhanced Treatment Performance
- High settling performance due to bio-selector and aerobic/anoxic /anaerobic cyclic sequences
- Suppress filamentous bacteria thus lower potential for "sludge bulking"
- Enhanced nutrient removal (Denitrification and Bio-P) without chemicals or separate tanks
- Built-in equalization capacity preventing performance deterioration during surge conditions

# Why SBR Cont..

Smaller Footprint and Lower Construction Cost

- Equalization, biological treatment and clarification achieved in one tank

- Return sludge pumping system or with submersible mixture
- Rectangular tanks with common-wall design
- Simple process, fast construction and installation

# Why SBR Cont...

#### Flexibility

- Duration of cycle or sequences can be adjusted to accommodate variation in hydraulic flow or biological loading, e.g. shorter cycle for peak flow conditions, or shorter aeration time for lower loading.
- Easy expansion with single rectangular tank design.
- Automatic control system provides easy and flexible adjustment to operational parameters

# Why SBR Cont...

#### Low O&M Cost

- Better aeration control, denitrification, lower power consumption
- Less and simpler equipment thus reduced maintenance
- Automatic control adapting to changing conditions, with less operator attention
- Biological N and P removal without need for chemicals

# SBR Major Components

- Inlet Screen etc.
- SBR Reactor tank
- Aeration system Diffuser
- RAS & WAS Pump
- Decanter
- Blower assembly
- Sludge treatment Filter Press /Centrifuge etc.
- Control Panel

### SBR Equipment arrangements



### Some of SBR Decanter installations









# SBR Process design steps

- Sizing of SBR Reactor
- Air requirement for the sbr process
- For BOD Removal
- For TN removal
- Oxygen credit if any
- Calculation of HRT, SRT, MLSS etc
- Sludge quantity

# Sizing of SBR Reactor

Sizing of SBR Reactor (for each basin for 1.4 mld STP as example)

- <u>BOD Load</u>  $L_{BOD} = ADF \times BODin / 1000 / 2 = 1400 \times 300 / 1000 / 2 = 210 kg BOD/day/basin$
- Food to Microorganism Ratio  $F/M_F/M = 0.12 \text{ kgBOD}_5/\text{kgMLSS/day}$
- <u>Sludge Volume Index SVI</u>  $SVI = 120 \text{ mL/g} = 0.12 \text{ m}^3/\text{kg}$
- Mass of Microorganism (Mmlss)  $M_{bio} = \underline{L_{BOD}}_{F/M} = \underline{210} = 1750 \text{ kg}$  $F/M \qquad 0.12$

### Cont..

- $V_{MLSS} = M_{MLSS} \times SVI = 1750 \times 0.12 = 210 \text{ m}^3$
- Clear Water Volume at Average Daily Flow

• 
$$V_{IN} = Q \times (CT) / 2 / 24$$
  
= 1400 x (4) / 2 / 24 = 117 m<sup>3</sup>

- Top Water Level TWL
- SBR tank depth is 5.5 m and design freeboard is 0.5 m.
- Top water level TWL = 5.5 0.5 = 5.0 m.

## Cont..

#### Basin/ Reactor Area

- BZ Buffer Zone, use 0.75 m
- Basin Dimensions
- The proposed dimensions of each SBR basin will be 10000 mm wide x 7700 mm long x 5500 mm deep, with total area of 77 m<sup>2</sup>.

## Calculations of HRT, MLSS & SRT

- Tank Volume at Top Water Level
- $V_{TWL} = TWL \times A = 5 \times 77 = 385 \text{ m}^3$
- Hydraulic Retention Time at TWL
- HRT =  $2 \times V_{TWL}$  / Q =  $2 \times 385$  / 1400 = 0.55 day = 13.20 hours
- > 2 Number of SBR basins, Q Average daily flow

#### MLSS at TWL

- MLSS = 1000 x  $M_{BIO}$  /  $V_{TWL}$  = 1000 x 1750 / 385 = 4545 mg/l
- 1000 Conversion, g/kg

### Cont...

#### Sludge Retention Time SRT

$$SRT = \frac{2 \times M_{BIO}}{SPb}$$

$$= 2 \times 1750 = 12.32 \text{ days}$$
  
284

- A moving-bed biofilm reactor (MBBR) has been developed by a Professor Hallvard Ødegaard in the late 1980s at the Norwegian University of Science and Technology .
- Uses cylindrical shaped polyethylene carrier elements for biological growth
- MBBR does not require any return activated sludge flow or backwashing
- Excellent for BOD/COD removal and nitrification / denitrification in all types of wastewaters

MBBR system consists of

- Bar screen
- MBBR aeration tank with suspended media
- Lamella / tube settler



- Attached Growth Process
- Moving media to increase the contact time between the bacteria and the organics
- High porosity media to provide large surface area for bacteria to attach and grow
- Requires comparatively lesser space than the conventional system

#### **Moving Bed Biofilm Reactors (MBBR)**

#### What is MBBR?

MBBR – Pure fixed film biological treatment system where a biomass grows on a fixed element to treat specific materials (BOD, NH3-N, NO3-N) and treatment train is separated into multiple reactors. System operates with NO Return Activated Sludge



Source: World Water Works

### **Schematic Comparison**







Source: World Water Works

### **MBBR Aeration System**



### **MBBR Screen**



## **MBBR PROCESS**



Aqwise MBBR / IFAS Media-Israel, manufactured at Germany (Total Surface area 1200 & 900 m2/m3)





Advanced Water & Wastewater Treatment Solutions

**Extending Nature's Capacity** 

www.agwise.com



#### Advantages of MBBR

- High Quality Effluent
- Small footprint
- Simplicity of Design, Installation and Operation
- Low Operating Costs
  - Media and Biomass retained

### Schematic IFAS / MBBR PFD





Advantages of MBBR

- Compact
- Robust biofilm process
- Easy upgrading of existing plants
- Easy to operate and control
- No clogging of biofilm carriers
- No sludge return

Low load on particle separation

The MBBR (moving bed biofilm reactor) process is an attached growth process that uses plastic carriers to provide a surface on which biofilm grows.

The plastic carriers are kept suspended in the aeration tank by an aerator for an aerobic process or by mechanical mixing for an anoxic or anaerobic process.

The plastic carriers are kept in the system by a sieve at the outlet of the tank.

The MBBR process doesn't require sludge recycle, because the biomass remains in the system attached to the plastic carriers.

The required reactor size for an MBBR process is typically significantly smaller than that for an activated sludge process treating the same wastewater flow, or for other common attached growth processes like the RBC or trickling filter.

It can be used for BOD removal, biological nitrification, biological denitrification, and biological phosphorus removal.

Primary clarification is typically used ahead of the MBBR tank. Secondary clarification is also typically used, but there is no recycle activated sludge sent back into the process, because an adequate microorganism population is maintained attached to the media.

## MBBR – DESIGN CRITERIA

- F:M 0.1 0.25
- MLSS 5000 8000 mg/l
- gm BOD / m<sup>2</sup> media 7.5 25
- Kg BOD /  $m^3$  of Tank Volume 0.6 3.2
- % Fill 18–60%
- MBBR Media Specs.  $250 1200 \text{ m}^2/\text{m}^3 \text{ of media}$

#### Single Stage BOD Removal MBBR Process Design :

An MBBR single stage BOD removal process may be used as a free-standing secondary treatment process .

The key design parameter for sizing the MBBR tank is the surface area loading rate (SALR), typically with units of g/m2/day, that is g/day of BOD coming into the MBBR tank per m2 of carrier surface area.

Using design values for wastewater flow rate and BOD concentration entering the MBBR tank, the loading rate in g BOD/day can be calculated.

Then dividing BOD loading rate in g/day by the SALR in g/m2/day gives the required carrier surface area in m2.

The carrier fill %, carrier specific surface area, and carrier % void space can then be used to calculate the required carrier volume, tank volume and the volume of liquid in the reactor.

A typical flow diagram for a single stage MBBR process for BOD removal is shown in the figure below.





#### Two-Stage BOD Removal MBBR Process Design Calculations

A two stage MBBR BOD removal process may be used instead of a single stage process.

In this case, a high SALR "roughing" treatment will typically be used for the first stage and a lower SALR will typically be used for the second stage.

This will result in less total tank volume needed for a two-stage process than for a single stage process.

Also, a two-stage MBBR process can typically achieve a lower effluent BOD concentration than a single stage MBBR process.

The process design calculations for a two stage MBBR process are essentially the same for each of the stages as for the single stage process.



#### TWO STAGE BOD REMOVAL & NITRIFICATION PROCESS IN MBBR TECHNOLOGY:

A two stage MBBR process may also be used to achieve both BOD removal and nitrification.

Nitrification with an MBBR process requires a rather low BOD concentration in order to favor the nitrifying bacteria in the biomass attached to the carrier.

Thus, the first stage for this process is used for BOD removal and the second stage is used for nitrification.

A typical flow diagram for a two stage MBBR process for BOD removal and nitrification is shown in the figure below.

As in the single stage nitrification process alkalinity is used for nitrification, so alkalinity addition is typically required.






## Single stage MBBR

Table 1. Typical Design SALR Values for BOD Removal

| Typical Design Values for MBBR reactors at 15°C |                               |                                    |  |  |
|-------------------------------------------------|-------------------------------|------------------------------------|--|--|
| Purpose                                         | Treatment Target<br>% Removal | Design SALR<br>g/m <sup>2</sup> -d |  |  |
| BOD Removal                                     | 75 - 80 (BOD-)                | 25 (800-)                          |  |  |
| Normal Rate                                     | 85 - 90 (BOD <sub>7</sub> )   | 15 (BOD7)                          |  |  |
| Low Rate                                        | 90 - 95 (BOD7)                | D7) 7.5 (BOD7)                     |  |  |

### Two Stage MBBR with BNR

Table 3. Typical Design SALR Values for Nitrification

| Typical Design Values for MBBR reactors at 15°C |                               |                                    |  |  |
|-------------------------------------------------|-------------------------------|------------------------------------|--|--|
| Purpose                                         | Treatment Target<br>% Removal | Design SALR<br>g/m <sup>2</sup> -d |  |  |
| Nitrification<br>BOD removal stage              | 90 - 95 (BOD7)                | 6.0 (BOD7)                         |  |  |
| Effl. NH <sub>3</sub> -N > 3 mg/L               | 90 (NH <sub>3</sub> -N)       | 1.00 (NH <sub>3</sub> -N)          |  |  |
| Effl. NH <sub>3</sub> -N < 3 mg/L               | 90 (NH <sub>3</sub> -N)       | 0.45 (NH <sub>3</sub> -N)          |  |  |

# Single stage MBBR design

**Example:** 

- A. With 1.5 MGD containing 175 mg/L BOD (in the primary effluent) is to be treated in an MBBR reactor.
- b) What would be a suitable design SALR to use for a target of 90–95% removal?
- c) If the MBBR carrier has a specific surface area of 600 m2/m3 and design carrier fill % of 40%, what would be the required volume of carrier and required MBBR tank volume?
- d) If the design carrier % void space is 60%, what would be the volume of liquid in the MBBR reactor?
- e) If the design peak hour factor is 4, calculate the average hydraulic retention time at design average wastewater flow and at design peak hourly wastewater flow.
- Solution:
- a) The BOD loading rate will be (1.5 MGD)(175 mg/L)(8.34 lb/MG/mg/L) = 2189 lb/day = (2189 lb/day)\*(453.59 g/lb) = 993,000 g BOD/day
- **8.34** is the conversion factor from mg/L to lb/MG
- 453.59 is the conversion factor from lb to g
- b) From Table 1 above, a suitable design SALR value for BOD removal with a target BOD removal of 90-95% would be 7.5 g/m2/day

- c) Required carrier surface area = (993,000 g/day)/(7.5 g/m2/day) = 132,403 m2.
- Required carrier volume = 132,403 m2/600 m2/m3. = 220.7 m3
- For 40% carrier fill: Required tank volume =  $220.7 \text{ m}^3/0.40 = 551.7 \text{ m}^3$ .
- d) The volume of liquid in the reactor can be calculated as:

```
tank volume – [carrier volume( 1 – void %)],
```

- Thus the volume of liquid is:
- $551.7 [220.7(1 0.60)] = 463.4 \text{ m}3 = 463.3 \times (3.28083) = 16,365 \text{ ft}3$
- e) The HRT at design average waste water flow can be calculated as:
- HRTdes ave = reactor liquid volume x7.48 / [Qx106/(24x60)]
- ▶ = 16,365 x7.48 / [1.5x106/(24x60)] = **118 min**
- HRTpeak hr = HRTdes ave/peak hour factor = 118/4 = 29 min

## For Two stage MBBR design

• a) For the first stage:

- i) The BOD loading rate will be (1.5 MGD)(175 mg/L)(8.34 lb/MG/mg/L) = 2189 lb/day = (2189 lb/day)\*(453.59 g/lb) = 993,022 g BOD/day
- ii) Required carrier surface area = (993,022 g/day)/(25 g/m2/day) = 39,721 m2.
- Required carrier volume = 39,721 m2/600 m2/m3. = 66.20 m3
- iii) For 40% carrier fill: Required tank volume = 66.2 m3/0.40 = 165,5 m3.
- iv) The volume of liquid in the reactor can be calculated as:

- tank volume [carrier volume(1 void %)], Thus the volume of liquid is:
- ▶ 165.5 [66.20(1 0.60)] = **139.02** m**3**. = 139.02(3.28083) = **4910** ft**3**
- **v**) The HRT at design average waste water flow can be calculated as:
- HRTdes ave = reactor liquid volume\*7.48/[Q\*106/(24\*60)] = 4910\*7.48/[1.5\*106/(24\*60)] = 35 min
- HRTpeak hr = HRTdes ave/peak hour factor = 35/4 = 9 min
- vi) Calculation of the estimated effluent BOD concentration from the first stage as shown above for the single stage process gives a value of 39 mg/L.
- **b**) For the second stage:
- i) The BOD loading rate will be (1.5 MGD)(39 mg/L)(8.34 lb/MG/mg/L) = 492.6 lb/day = (492.6 lb/day)\*(453.59 g/lb) = 223,430 g BOD/day

- ii) Required carrier surface area = (223,430 g/day)/(7.5 g/m2/day) = 29,791 m2.
- Required carrier volume = 29,791 m2/600 m2/m3. = 49.65 m3
- iii) For 40% carrier fill: Required tank volume = 49.65 m3/0.40 = 124.1 m3.
- iv) The volume of liquid in the reactor can be calculated as:
- tank volume [carrier volume(1 void %)], Thus the volume of liquid is: 124.1 - [49.65(1 - 0.60)] = 104.3 m3 = 104.3(3.28083) = 3682 ft3
- **v**) The HRT at design ave ww flow can be calculated as:

- HRTdes ave = reactor liquid volume\*7.48/[Q\*106/(24\*60)] = 3682\*7.48/[1.5\*106/(24\*60)] = 26 min
- HRTpeak hr = HRTdes ave/peak hour factor = 26/4 = 7 min
- Calculation of the estimated effluent BOD concentration from the second stage using the calculation procedure shown above for the single stage process gives a value of 3.0 mg/L.

- Required carrier volume = 132,403 m2/600 m2/m3. = 220.7 m3
- For 40% carrier fill: Required tank volume =  $220.7 \text{ m}^3/0.40 = 551.7 \text{ m}^3$ .
- d) The volume of liquid in the reactor can be calculated as:
- tank volume [carrier volume( 1 void %)],
- Thus the volume of liquid is:
- 551.7 [220.7(1 0.60)] = 463.4 m3 = 463.3 (3.28083) = 16,365 ft3
- e) The HRT at design average waste water flow can be calculated as:
- HRTdes ave = reactor liquid volume x7.48 / [Qx106/(24x60)]
- $= 16,365 \times 7.48 / [1.5 \times 106 / (24 \times 60)] = 118 \text{ min}$
- HRTpeak hr = HRTdes ave/peak hour factor = 118/4 = 29 min

## Summary for single & 2 stage

Solution: The results are summarized below:

- Single Stage Process Two-Stage Process • MBBR Volume: 19,482 ft3 10,228 ft3 Carrier Surf. Area: 132,403 m2 69,512 m2
- Est. Effl. BOD: 13 mg/L

3 mg/L

Note: that the two-stage process requires only about half of the tank volume and half of the carrier quantity in comparison with the single stage process, while achieving a significantly lower estimated effluent BOD.

- It is an activated sludge process that uses a membrane system which replaces the traditional gravity sedimentation unit
- ➤ MBR consists of -

(1) Biological unit responsible for the biodegradation

(2) Membrane module for the physical separation of the treated water from mixed liquor

MBR is configured as: (1) Integrated or submerged membrane, involves membranes that are <u>internal</u> to the bioreactor

(2) External or recirculated membrane, involves recirculation of the mixed liquor through a membrane module <u>outside of bioreactor</u>

### Advantages of MBR Over Conventional Systems

- Excellent effluent quality
- Optimum control of the microbial population and flexibility in operation
- Enables sensitive, slow-growing species (nitrifying bacteria, bacteria capable of degrading complex compounds) to develop and persist in the system even under short SRTs
- Improved oxidation of higher molecular weight soluble compounds

Able to handle machuations in nutrient concentrations

#### Other Advantages

- Space requirements, approximately 25-50% of conventional treatment
- It is simple to operate, requiring significantly less operator attention and time
- o Disinfection requirements are reduced or eliminated
- Effluent virtually free of suspended solids
- Very low effluent nutrient (nitrogen and phosphorus)
  concentrations are achievable

#### Other Advantages (*Continued*)

- The effluent quality is suitable for recycle and reuse without further treatment
- Produces an effluent that is suitable for a reverse osmosis system, which may be required to remove dissolved solids (salts)
- $_{\odot}~$  Modular design for easy expansion

#### Disadvantages of MBR

- High capital costs due to expensive membrane units
- High energy costs due to the need for a pressure gradient have characterized the system
- Frequent cleaning of the membranes stops the operation and requires clean water and chemicals
- Since the MBR retains all suspended solids and most soluble organic matter, waste-activated-sludge may exhibit poor filterability and settleability properties
- At high SRTs, inorganic compounds accumulating in the bioreactor can reach concentration levels that can be harmful to the microbial population or membrane structure





### Membrane Bio Reactor - MBR



MBR is a hybrid wastewater treatment technology:

- 1. Biological treatment by activated sludge and
- 2. Physical treatment by membrane filtration

Making treated water suitable for re-use.

EAW00/10/12



### **Different Configurations and Types**



#### Membrane modules





Permeate

Air



### **MBR – DESIGN CRITERIA**

### PRE- AERATION TANK

Design Basis – F/M

Fine Screens

**MBR** Tanks

Membrane Flux Rate

: 0.05-0.25

: 1–2 mm opening

: Minimum 2

Flat Sheet: 12–25 lmhHollow Fibre: 10 – 20 lmhSewage: 18 lmhIndustrial:8–10 lmh



## MEMBRANE TECHNOLOGY

- Very High Loading Rates
- Small Footprint
- High Quality
  Treated Effluent
- Pathogen Removal



### **TERTIARY TREATMENT**

High Rate Solids Contact Clarifier –TSS, Hardness, Colloidal Silica

Disinfection

Pressure Sand Filter – TSS

Activated Carbon Filter - Residual COD

Dual Media Filters -TSS/ Residual COD

Ultrafiltration -Organics which may foul RO membrane

Reverse Osmosis -TDS

### DISINFECTION

CHLORINE DISINFECTION: NaOCI / Onsite / Chlorine Tonner

• Recommended Dosage : 5 mg/l in terms of Chlorine (max.)

#### ULTRAVIOLET DISINFECTION

• UV dose is the product of UV light intensity and time. Dose is sometimes referred to as fluence

Dose = Intensity x Time = millijoules/(sec)(cm<sup>2</sup>) x time = mJ/cm<sup>2</sup> (Note :  $10 \text{ J/m}^2 = 1,000 \text{ microWsec/cm}^2 = 1 \text{ mJ/cm}^2$ )

- Maximum recommended lamp distance is 20 cm
- No detention time is envisaged and system can be online though recommended detention time is 5-10 secs.
- As per general industry standards, radiant dose of 50-100 mJ/cm<sup>2</sup> should be adequate for disinfection requirement

#### **OZONE DISINFECTION**

Recommended Dosage : 5 – 8 mg/l max

### **PRESSURE SAND FILTRATION**



Flow of biologically treated effluent (clarified) through a bed of granular media

•Operating principles: mechanical straining and physical adsorption

•Water fills the pores of the filter medium, and the impurities are adsorbed on the surface of the grains or trapped in the openings

Loading – 12 m3/m2/hr

### **PRESSURE SAND FILTRATION**



### **ACTIVATED CARBON FILTER**

Operates on Adsorption principles

- Due to high degree of micro porosity, activated carbons provide a huge surface area
- Adsorption directly related to the surface area of the media
- The ACF consist of Activated Carbon granules

supported by very fine quartz filter media

• Loading – 10 m3/m2/hr



### **DUAL MEDIA FILTER**



#### • Loading – 10 – 15 m3/m2/hr

### **MEMBRANE TYPES**

#### MEMBANE PROCESSES



### **RO** Membrane at a Glance

Domestic & Industrial





### **UF Membrane**



### Micron/ Cartridge Filters





**OSMONICS** 

#### **The Filtration Spectrum**



5951 Clearwater Drive, Minnetonka, MN 55343-8995 USA Phone (612) 933-2277, Fax (612) 933-0141, Toll Free (800) 848-1750 http://www.osmonics.com

Asia/Pacific Headquarters

**Euro/Africa Headquarters** 

Fax 011-66-2-39-18183 Bangkok, Thailand

#### Le Mée Sur Seine Fax 011-331-10-3747 (Paris), France

Printed in USA, P/N 1117978 Rev. E

### MEMBRANE FILTRATION PROCESSES A – COMPARISION

| Description              | Granular Media Particle<br>Filtration            | Microfiltration                                                                                                                           | Ultrafiltration                                                                                                                 | Nanofiltration                                                                 | Reverse Osmosis                                                                                                          |
|--------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Application              | Removal of residual<br>Suspended solids          | Removal of colloidal particulate matter                                                                                                   | Removal of<br>particulate matter in<br>macromolecular and<br>molecular range.                                                   | Removal of Hardness<br>and DBP                                                 | Removal of inorganic<br>dissolved solids and<br>soluble silica.                                                          |
| Separation Range         | 10 microns and above                             | 0.1 to 10 microns                                                                                                                         | 0.01 to 0.1 microns                                                                                                             | 0.001 to 0.01 microns                                                          | less than 0.001 microns                                                                                                  |
| Molecular Weight Cut-off |                                                  | > 100,000 Daltons                                                                                                                         | 10,000 - 100,000 Daltons                                                                                                        | 1,000 - 100,000 Daltons                                                        |                                                                                                                          |
| Operating pressure       | minimum 2 kg/cm2                                 | 1-4 kg/cm2                                                                                                                                | 2-7 kg/cm2                                                                                                                      | 6 kg/cm2                                                                       | 10 kg/cm2 & above                                                                                                        |
| Rejection of             | Macroparticles usually visible to the naked eye. | Sand, silt, clays,<br>Giardia amblia and<br>Cryptosporidium<br>cysts, algae, partial<br>removal of bacteria<br>but no viruses.            | Sand, silt, clays,<br>Giardia amblia and<br>Cryptosporidium<br>cysts, algae, bacteria,<br>humic substances,<br>colloidal silica | Hardness & Viruses                                                             | Dissolved solids due to<br>inroganic contaminants<br>including removal of<br>hardness and alkalnity,<br>dissolved silica |
| Virus removal            | No virus removal                                 | MF is not an absolute<br>barrier to viruses. MF<br>to be combined with<br>disinfection process<br>in order to provide<br>total barrier to | UF provideds total<br>barrier to most<br>viruses. However for<br>total virus<br>inactivation<br>disinfection required.          | Absolute barrier to cysts and viruses.                                         | Absolute barrier to cysts and viruses.                                                                                   |
| TOCTEMOVAL               | Possible via adsorption on anthracite or GAC     | No removal                                                                                                                                | Limited removal                                                                                                                 | TOC to be removed<br>during pretreatment.<br>TOC tolerance 2 to 5<br>ppm as C. | TOC to be removed<br>during pretreatment.<br>TOC tolerance 2 to 5<br>ppm as C.                                           |

### MEMBRANE FILTRATION PROCESSES A – COMPARISION

| Description              | Granular Media Particle<br>Filtration                             | Microfiltration                                                                   | Ultrafiltration                                                            | Nanofiltration                                               | Reverse Osmosis                                                         |  |
|--------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------|--|
| Water Quality Acheivable | 5-10 NTU                                                          | 1 NTU                                                                             | 0.1 NTU                                                                    | < 0.1 NTU                                                    | < 0.1 NTU                                                               |  |
| Mode of filtration       | Dead-End                                                          | Dead-End                                                                          | Dead-End / Crossflow                                                       | Crossflow                                                    | Crossflow                                                               |  |
| System Recovery          | 90 to 95 %                                                        | 85 to 90 %                                                                        | 85 to 90 %                                                                 | 80 to 85 %                                                   | 70% and above for<br>brackish water                                     |  |
| Waste stream             | 5 to 10%                                                          | 10 to 15 %                                                                        | 10 to 15 %                                                                 | 15 to 20 %                                                   | 20 to 30 %                                                              |  |
| Energy Consumption       | 0.2 kW.hr/m2                                                      | 0.4 kW.hr/m3                                                                      | 3.0 kW.hr/m3                                                               | 5.3 kW.hr/m3                                                 | 10.2 to 18.2 kW.hr/m3                                                   |  |
| Flux                     | 9720-14400 LMD                                                    | 405-1600 LMD                                                                      | 405-815 LMD                                                                | 200-815 LMD                                                  | 320-490 LMD                                                             |  |
| Drawbacks                | Lowest energy<br>requirement                                      | Moderate energy<br>requirement                                                    | Moderate energy<br>requirement                                             | Energy intensive                                             | Energy intensive                                                        |  |
|                          | Usually clarification<br>required prior to<br>filtration          | Particle filtration pretreatment                                                  | Prefiltration using MF required                                            | Extensive pretreatment<br>including<br>dechlorination        | Extensive pretreatment including dechlorination                         |  |
|                          | Efficient operation dependent on effective pretreatment           |                                                                                   |                                                                            |                                                              |                                                                         |  |
|                          | Chlorine tolerated                                                | Chlorine tolerated                                                                | Chlorine tolerated                                                         | Poor chlorine tolerance                                      | Poor chlorine tolerance.                                                |  |
|                          | No virus removal.<br>Disinfection required to<br>effect the same. | Partial virus removal.<br>Disinfection required<br>for complete virus<br>removal. | No complete removal<br>of TOC. Disinfection<br>by-products not<br>removed. | Hardness removal-<br>total virus removal &<br>removal of DBP | Can remove NDMA and other related organic compounds                     |  |
|                          |                                                                   |                                                                                   |                                                                            |                                                              | Considerable brine<br>generated which<br>requires separate<br>treatment |  |

### WATER POLISHING TREATMENT

- Unit processes decided primarily on basis of water quality required (0.1 NTU)
- > 0.1 NTU Turbidity cannot be achieved using Microfiltration Membranes
- Ultrafiltration required to achieve 0.1 NTU
- ➢ UF membranes available in Hollow Fibre and Tubular configurations
- UF capable of handling TOC up to a certain extent

Total Virus Inactivation by UF
# PRINCIPLE OF REVERSE OSMOSIS



By applying pressure that exceeds the osmotic pressure, the reverse effect occurs. Fluids are pressed back through the membrane, while dissolved solids stay behind.

Reverse Osmosis (RO) is a membrane process of purification which removes most of the total dissolved solids (TDS).

# **REVERSE OSMOSIS**



# TWO STAGE RO SYSTEM



# **Typical RO System PFD**



# Morphology of RO Membrane

#### **RO** Membranes

- Spiral wound membranes
- Hollow fiber membranes



- 8" Spiral Membrane area increased from 300 ft<sup>2</sup> to 480 ft<sup>2</sup>
- Membrane dia increased from 8" to 16"



Spiral wound membrane sheet section

# **RO MEMBRANE FOULING**

- Potential deposition and accumulation of constituents in the feed stream on the membrane – silica scales
- Biological fouling: Various microorganisms can deposit on membrane surface
- Antiscalents are added to prevent scaling where as alkali is used to control fouling
- It is necessary to dechlorinate the effluent as chlorine affects the membrane

# **UF & RO DESIGN CONSIDERATIONS**

#### **ULTRAFILTRATION**

BOREWELL WATER

RIVER WATER

TREATED EFFLUENT

- UPTO 60 LMH
  - UPTO 65 LMH
  - 30 35 LMH

#### **REVERSE OSMOSIS**

TDS UPTO 3000 MG/L

TDS UPTO 10000 MG/L

TDS ABOVE 10000 MG/L



- MAXIMUM 30 LMH
  - MAXIMUM 22 LMH
  - MAXIMUM 13 LMH
    - 15–17 LMH

# **ULTRAFILTRATION (UF) MEMBRANES**

### • Membranes:

- Hollow Fibre capillary
- MOC : Poly Ether Sulphone (PES) or Polyvinylidene Fluoride (PVDF)
- Used as pre-treatment to RO
- Less pressure, less footprint area
- Limitations : High cost, replacement required



# ADVANTAGES OF RO

- Attractive at places where there is water scarcity & permeate water is recycled/reused in industry
- Treated water quality is excellent for recycle in industrial processes
- Consistent treated water quality
- Considerably reduces the volume of waste streams

# LIMITATIONS OF RO

- High capital cost
- Limited recoveries (50-85 percent) at one stage
- Reject disposal challenges
- High operating cost due to higher energy consumption of high pressure pumps
  - Replacement of membranes after 3 years

# **BIS STANDARD ON DRINKING WATER**

**Drinking Water Quality Standards** 

#### WATER QUALITY PARAMETERS AND BIS STANDARDS FOR VARIOUS CHEMICAL AND BIOLOGICAL CONSTITUENTS

| S.No. | Parameters                   | Drinking water<br>IS 10500 : 2012 |               |  |  |
|-------|------------------------------|-----------------------------------|---------------|--|--|
|       |                              | Permissible Limit                 | Maximum Limit |  |  |
| 1     | Odor                         | Agreeable                         | Agreeable     |  |  |
| 2     | Taste                        | Agreeable                         | Agreeable     |  |  |
| 3     | рН                           | 6.5 to 8.5                        | No relaxation |  |  |
| 4     | TDS (mg/l)                   | 500                               | 2000          |  |  |
| 5     | Hardness (as CaCO3) (mg/l)   | 200                               | 600           |  |  |
| 6     | Alkalinity (as CaCO3) (mg/l) | 200                               | 600           |  |  |
| 7     | Nitrate (mg/l)               | 45                                | No relaxation |  |  |
| 8     | Sulfate (mg/l)               | 200                               | 400           |  |  |
| 9     | Fluoride (mg/l)              | 1                                 | 1.5           |  |  |
| 10    | Chloride (mg/l)              | 250                               | 1000          |  |  |
| 11    | Turbidity (NTU)              | 5                                 | 10            |  |  |
| 12    | Arsenic (mg/l)               | 0.01                              | 0.05          |  |  |
| 13    | Copper (mg/l)                | 0.05                              | 1.5           |  |  |
| 14    | Cadmium (mg/l)               | 0.003                             | No relaxation |  |  |
| 15    | Chromium (mg/l)              | 0.05                              | No relaxation |  |  |
| 16    | Lead (mg/l)                  | 0.01                              | No relaxation |  |  |
| 17    | Iron (mg/l)                  | 0.3                               | No relaxation |  |  |
| 18    | Zinc (mg/l)                  | 5                                 | 15            |  |  |
| 19    | Fecal Coliform (cfu)         | 0                                 | 0             |  |  |
| 20    | E. Coli (cfu)                | 0                                 | 0             |  |  |

# WHO GUIDELINES ON DRINKING WATER

- Arsenic 10 μg/L Barium 10 μg/L Boron 2400 μg/L
- Chromium 50 µg/L Fluoride 1500 µg/L
- Selenium 40 µg/L Uranium 30 µg/L
- Organic species:
- Benzene 10  $\mu g/L\,$  Carbon tetrachloride 4  $\mu g/L\,$  1,2-Dichlorobenzene 1000  $\mu g/L\,$
- 1,4-Dichlorobenzene 300 μg/L 1,1-Dichloroethane 30 μg/L
- 1,2-Dichloroethene 50 µg/L Dichloromethane 20 µg/L
- Di(2-ethylhexyl)phthalate 8 µg/L 1,4-Dioxane 50 µg/L
- Edetic acid 600 µg/L Ethylbenzene 300 µg/L
- Hexachlorobutadiene 0.6 µg/L Nitrilotriacetic acid 200 µg/L
- Pentachlorophenol 9 µg/L Styrene 20 µg/L
- Tetrachloroethene 40 μg/L Toluene 700 μg/L
- Trichloroethene 20 µg/L Xylene 500 µg/L

## TYPICAL PROCESS SCHEME FOR DRINKING WATER PLANT

 Water from sources → Disinfection -> Filtration ->ACF ->Micron Filter -> UF ->RO->Disinfection →Distribution





allas

| Operating cost detailes              |                              |                              | l.                              | RO I ST stag     | e                    |        |          |
|--------------------------------------|------------------------------|------------------------------|---------------------------------|------------------|----------------------|--------|----------|
| Overall operating cos                | t per lit of p               | roduct wate                  | r                               |                  |                      |        |          |
|                                      | M3/hr                        | hrs                          | m3/day                          | m3/ year         | 350                  |        |          |
| input flow                           | 30                           | 20                           | 600                             | 210000           |                      |        |          |
| Output                               | 22.5                         | 20                           | 450                             | 157500           |                      |        |          |
| Annual Power                         |                              |                              |                                 |                  |                      |        | 113960   |
| Annual Chemicals                     |                              |                              |                                 |                  |                      |        | 34440    |
| Annual Membrane<br>replacement       |                              |                              |                                 |                  |                      |        | 50000    |
| Annual Catridge<br>replcaement       |                              |                              |                                 |                  |                      |        | 2400     |
| Man power                            |                              |                              |                                 |                  | 2                    |        | 14000    |
| Total cost                           |                              |                              |                                 |                  |                      |        | 214800   |
| Cost Rs. per m3 of<br>water produced | 100                          | 1000                         | 0.1                             | 157500           |                      | 1.36   | 13.6     |
| Power cost                           |                              | kw each                      | nos                             | Total kw         | Op.hrs x<br>24 x 350 | Rs./kw | Rs/vear  |
| Raw water nump                       | 1                            | 3.7                          | 1                               | 3.7              | 25900                | 5.5    | 14745    |
| Dosing pump                          |                              | 0.1                          |                                 | 0.7              | 1400                 | 5.5    | 770      |
| High pressure pump                   |                              | 25.7                         | 1                               | 25.7             | 179900               | 5.5    | 98945    |
| Total                                |                              |                              |                                 | 29.6             | 1,0000               |        | 113960   |
| Chemical cost                        |                              |                              |                                 |                  |                      |        |          |
| Dosage                               | mg/lit                       | kg or lit/day                | yearly                          | Rate /kg         |                      |        | Rs/year  |
| Anticsalanet                         | 4                            | 2.4                          | 840                             | 400              |                      |        | 33600    |
| Ant bactrial shut off                | 0                            | 0                            | 0                               | 20               |                      |        |          |
| Acid / Alkali                        | 2                            | 1.2                          | 420                             | 20               |                      |        | 840      |
|                                      |                              |                              |                                 |                  |                      |        | 34440    |
| Membrane                             | Total                        | Nos.<br>replaced<br>per year | Replaceme<br>nt Period<br>years | Rs./<br>Membrane | Total Rs.            |        |          |
| RO                                   | 30                           | 10                           | 3                               | 50000            | 500000               |        |          |
| Catridge                             | Nos.<br>replaced<br>per year | Replacement<br>Period        | Rs. /<br>Cartridge              | Total Rs.        |                      |        |          |
| 5 Micron Cartridge                   | 48                           | Monthly                      | 500                             | 24000            |                      |        |          |
| Man Power                            | Nos                          | Rs/day                       |                                 | Total            |                      |        |          |
|                                      | 1                            | 400                          |                                 | 140000           |                      |        | EAW/00/1 |

### **COMPARISON OF ASP/MBR/MBBR/SBR TECHNOLOGY**

| Description    | Activated Sludge Process<br>(ASP)                        | Membrane Bio Reactor<br>(MBR)                          | Moving Bed<br>Biological<br>Reactor (MBBR) | Sequential Batch Reactor<br>(SBR)                                 |  |
|----------------|----------------------------------------------------------|--------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------|--|
| End use        | Gardening                                                | Recycle                                                | Gardening,<br>flushing                     | Gardening, recycle                                                |  |
| SRT            | Not sensitive to low SRT                                 | Sensitive to low SRT,<br>can cause membrane<br>fouling | Not much<br>sensitive                      | Highly sensitive as can<br>affect the quality of treated<br>water |  |
| Pretreatment   | Coarse screening                                         | Fine screening is must                                 | Coarse screening                           | Coarse screening                                                  |  |
| Peak flow      | Well addressed                                           | Troublesome to handle                                  | Addressed                                  | Well Addressed                                                    |  |
| Safety         | Good as electrical<br>connections are not<br>inside tank | Good                                                   | Good                                       | Good as controlled by PLC                                         |  |
| Capital cost   | Low                                                      | High                                                   | Intermediate                               | Intermediate                                                      |  |
| Operating cost | Low                                                      | High due to<br>maintenance of<br>membranes             | Moderate                                   | Moderate                                                          |  |
| Man power      | Skilful                                                  | Highly skillful since<br>fully automated               | Skillful                                   | Highly skillful since filly<br>automated                          |  |



# **Comparison of Secondary Technologies**

| Parameters                                  | ASP                | TF         | UASB+FPU            | UASB+EAS   | SBR        | MBR        | MBBR       |
|---------------------------------------------|--------------------|------------|---------------------|------------|------------|------------|------------|
| OVERALL HRT (WHOLE SYSTEM)                  | 12 - <b>14</b> hrs | 13 -14 hrs | 1.33 -1.5 days      | 14 -18 hrs | 14 -16 hrs | 12 -14 hrs | 8 -12 hrs  |
| BOD REMOVAL, %                              | 85 -95             | 80 -90     | 80 -88              | 80 -95     | 90 - 95    | 95 -98     | 85 -95     |
| COD REMOVAL, %                              | 80 - 90            | 85 -90     | <mark>80</mark> -85 | 80 -90     | 88 -96     | 95 -100    | 80 -90     |
| TSS REMOVAL, %                              | 85 -90             | 75 -85     | 80 -85              | 85 -90     | 90 - 96    | 98 -100    | 85 -95     |
| FAECAL COLIFORM REMOVAL,                    | upto 3 < 4         | upto 2 < 3 | upto 1 < 2          | upto 2 < 4 | upto 2 < 4 | upto 6 < 7 | upto 2 < 4 |
| AVERAGE AREA REQUIRED (M <sup>2</sup> /MLD) | 1,820              | 1,620      | 1,800               | 1,450      | 300        | 800        | 450        |
| BIOGAS GENERATION M3                        | 55 -70             | 55 -70     | 35 -50              | 35 -50     | Nil        | Nil        | Nil        |
| BIO -ENERGY GENERATION (KWH)                | 25 -35             | 25 -35     | 20 -30              | 20 -30     | Nil        | Nil        | Nil        |
| ECONOMIC LIFE IN YEARS                      | 30                 | 30         | 30                  | 30         | 30         | 30         | 30         |



Source: MoEF, 2004, 2005 and 2006, UPJN 2006, N. Sato et al. 2006, N. Khalil et al. 2006, EPA USA 2000, Urban Plan Consulting & Engg. Pvt. Ltd., New Delhi, 07)

1. Disinfection through Chlorination technique is considered for all the technologies except where not required. Land required is also included.

2. Manpower requirement varies from technology to technology. Annual cost for each category is taken as per the NRCD norms.

3 Assumed Land Cost-Rs 9 Jacs/ acre

EAW00/10/12



### **Role of Operator**

- Responsible for running the STP properly and efficiently
  - Understanding the technology, process and equipment thoroughly
  - Ensuring the WWTP meets effluent limits
  - Monitoring and Sampling
  - Reading gauges and meters
  - Recording and interpreting of data
  - Preparing and submitting Reports

## **Role of Operator**

Responsible for running the STP properly and efficiently

- Identifying gaps and carrying out investigations
- Carrying out studies and improvements
- Maintaining inventory of equipment and spare parts
- Performing routine maintenance and repairs
- Painting equipment and buildings
- Maintaining facility grounds
- Liason/explaining with Regulatory authorities, management, public
- Budgeting
- Other



## Monitoring

- Monitoring Plan (Sampling, Analysis and Monitoring Plan)
- Pollutants to be Monitored is driven by:
  - Limits
  - Raw Wastewater Characteristics
  - Process Performance e.g., Removals of pollutants
  - Process Control e.g., MLSS, MLVSS, pH
  - Information and Investigation
- Pollutants & Parameters
  - Process or Unit Specific
  - Flow, Temp, pH, Pressure, Levels, ORP etc
  - BOD, COD, metals, nitrogen, phosphorus etc
  - Frequency

#### Location

Inlet, Outlet, intermediate of Unit process or system

## Sampling, Analysis and Reporting

#### Sampling

- Grab, Composite
- Glass bottles for Oil & Grease
- Temperature and pH

#### Sample Preservation

- Time how long?
- Acidic for metals
- Temperature
- Other follow procedure
- Analysis Standard Methods
- Reporting NH3 as N or NH3? Metals Compounds as metal? Total Nitrogen as N or NH3? BOD3 or BOD5?

## **Sampling Fundamentals**

- Representative sample
- Well mixed Location
- Sample containers must be marked properly
- Preservation

## **Grab Sampling**



Source: Wastewater Treatment Training Manual, WEF, 2009

## **Composite Sampling**



Source: Wastewater Treatment Training Manual, WEF, 2009

## **Activated Sludge Sampling Plan**

|  | Sampling Location               | Analysis          | Use | Frequency | Туре |
|--|---------------------------------|-------------------|-----|-----------|------|
|  | Primary Effluent                | BOD               | PP  | D         | С    |
|  |                                 | TSS               | PP  | D         | С    |
|  |                                 | pН                | PC  | D         | G    |
|  | Mixed Liguor                    | DO                | PC  | D         | G    |
|  | •                               | Temperature       | PC  | D         | G    |
|  |                                 | TSS               | PC  | D         | C    |
|  |                                 | VSS               | PC  | D         | с    |
|  |                                 | NO3-N             | PC  | W         | G    |
|  | Return Sludge                   | TSS               | PC  | D         | C    |
|  | Secondary Clarifier<br>Effluent | BOD               | PP  | D         | C    |
|  |                                 | TSS               | PP  | D         | C    |
|  |                                 | DO                | PP  | D         | G    |
|  |                                 | Fecal Coliform    | PP  | D         | G    |
|  |                                 | Chlorine Residual | PP  | D         | G    |
|  |                                 | рН                | PP  | D         | G    |
|  |                                 | TKN               | PP  | W         | G    |
|  |                                 | NH3               | PP  | W         | G    |
|  |                                 | NO2-N             | PP  | W         | G    |
|  |                                 | NO3-N             | PP  | W         | G    |

Source: MOP 11, WEF, 2007

### **Activated Sludge Sampling Plan**

- D = Daily
- W = Weekly
- M = Monthly
- C = Composite Sample
- G = Grab Sample
- PC = Process Control
- PP = Process Peformance

## **Process Control & Monitoring**

- Controls Manual, Semi-Automatic, Automatic
- Controls Local, Remote, Both
- Automatic
  - PLC, SCADA
  - Set Point

#### Automatic

- Better Control
- Low Operating Cost
- High Capital Cost

#### Instrumentation & Sensors

- Online measurement
- Manual Sampling and Analyses
- Backup

# WASTEWATER TREATMENT AND PURIFICATION TECHNOLOGIES

"The significant problems we face today cannot be solved at the same level of thinking we were at when we created them"

## Albert Einstein

# **Any Questions**





# **Contact Details**

## THANK YOU

### For more information, pls contact :

### Ashok Srivastava

## M: +91 8130781222, Email: ashoknapier@gmail.com