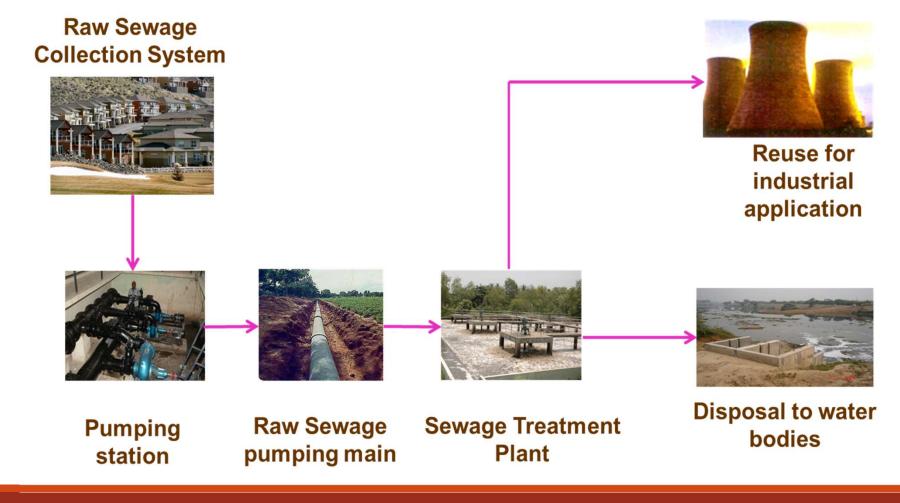

Hydraulic modelling of sewerage Sewerage system through modelling software

Date of Training : 17.09.2022

Course Contents

- Overview on Sewerage network components
- Design parameters (Population Projection, Design period, Peak factor, Pipe materials, velocity criteria, pipe flow (d/D) constraints)
- Basics on Hydraulics of Sewer network system
- Creation of Hydraulic model of a Sewer network
 - * Requirements of Hydraulic model results from a Hydraulic model
 - Modelling software elements
 - Building a Hydraulic model & Its Process


Disclaimer :

- Happening inside a Hydraulic model
- Locating of Outfalls & Creation of Sewerage zone in the Hydraulic model.
- * Optimisation of sewer network through hydraulic models.
- Scenario creation and management.
- Benefits & Use of Simulated model results from a Hydraulic model

This E-course may contain references or links to materials from third-parties. Reference to any third-party products, services, processes or other information, by trade name, trademark, manufacturer, supplier or otherwise does not constitute or imply endorsement, sponsorship or recommendation thereof, or any affiliation with the scope of the training.

Sewerage network components

Sewerage system is to collect and transport sewage from various point sources to the point of treatment or discharge

Design Parameters – (1/2)

Projection of future population

Expected population for the Intermediate year (15 years) and ultimate year (30 years) is worked out adopting the census population from the say present 2011 year and past decades by following different methods.

- Arithmetical Increase
- Incremental Increase
- Geometric Progression
- Line of Best Fit Method
- Exponential Method
- Population Forecast by Semi log
- District decadal growth rate

Unit Sewage Flow: 80 % of Water supplied (i.e 135 lpcd / 150 lpcd)

Peak Factor :

Contributory Population	Peak Factor
Upto 20,000	3.00
20,000 - 50,000	2.50
50,000 - 750,000	2.25
Above 750,000	2.00

Design Parameters – (2/2)

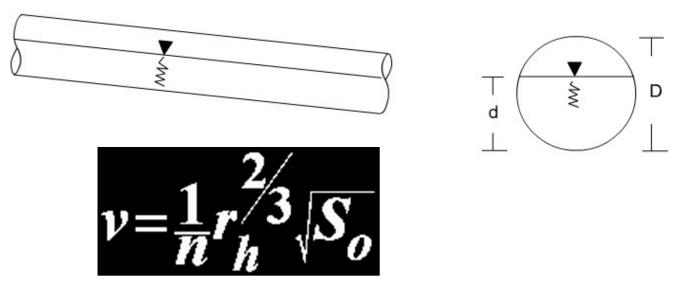
Design Period

- Base year Year at which project is expected to be completed.
- Intermediate design year 15th Year from Base year.
- Ultimate design year -30th Year from Base Year.

Diameter of the sewers and the slope should be decided to meet the following conditions

- Minimum size of the sewer should be not less than 150mm.
- If any future development is anticipated beyond the head reach, the starting sewer can be of 200mm diameter.

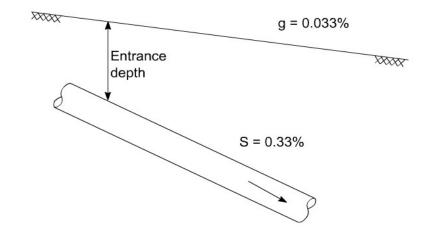
Velocity

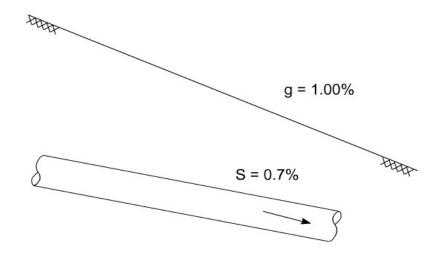

The velocity of flow and slopes (grade) of sewers are very important criteria in the sewer design.

A self-cleansing velocity of 0.6 m/s and 0.8 m/s should be maintained at the present peak flow, and at the ultimate peak flow respectively.

D/d ratio :

Sewer section should be designed to run at partial full condition always not exceeding 0.80 full depth at the ultimate peak flow.


Basics on Hydraulics of Sewer Network System (1/2) Equation for flow



v = velocity; a = flow area; r_h = hydraulic radius; S_o = sewer slope; n = roughness coefficient; d = flow depth ; D = sewer diameter

Sewer is designed for steady, uniform free surface flow conditions d/D < 0.8

Basics on Hydraulics of Sewer Network System (2/2)

- Sewer grade > ground slope
- Sewer becomes deeper and deeper
- Pumping may be necessary

- Ground slope > minimum slope required
- Sewer slope > minimum slope required
- Sewer slops < ground slope
- A fall becomes necessary

What does Hydraulic modelling software does?

Given:

System map Physical properties Loading data

Software packages : SewerGEMS SWMM (USEPA) Infoworks ICM SE Canal ++ (tandler.com) & Many more etc.

Determines: Flow, velocity, depth in each conduit Level in each manhole, wet well /Outfall depth

Creation of Hydraulic model of a Sewer network

Major Activities in Creation of Hydraulic Model

- ✓ Population data collection and Wastewater flow estimation.
- ✓ Field Topographical Survey
- ✓ Base Map preparation and creation of network
- ✓ Existing sewerage system study.
- ✓ Adequacy of existing sewerage system through detailed analysis.
- ✓ Design of new sewer Collection network

Creation of Hydraulic model of a Sewer network

Future Demand Projections :

The demand growth is considered based on the following criteria:

- a) Growth of domestic population based on population density
- b) Growth of non-domestic and industrial/institutional population in proportion to the customer survey
- c) Bulk flow based on existing customers and expected future growth
- d) Provision for Infiltration to be considered based on soil conditions of the project area.

Sewage Pumping station and Lifting station &Wetwell etc :

- a) To be preferably Located at lowest point
- b) The location of the service reservoir should be such as to maintain the depth of the sewer system consistent with its cost effectiveness.
- c) Lifting & Pumping stations:
 - For localities with higher depths, boosters may be provided instead of increasing the size of mains or depth of manhole unduly for maintaining the required depth.

Base map Creation & Network marking:

- a) Conduct field surveys
- b) Fix the alignment of trunk main
- c) Prepare topographical map of the project area/town
- d) Prepare cross-sections of streets etc
- e) Mark tentative lay out of network
- f) Show positions of reservoirs,
- g) Mark the existing pipes, valves and other appurtenances

Sewer Network design

- a) Estimate inflow based on population density
- b) Assume appropriate diameters
- c) Analyze the system for depth of manholes
- d) Check for satisfaction of constraints
- e) Assume another set of diameters
- f) Repeat the process
- g) Select the system: satisfies all the constraints and is most economical

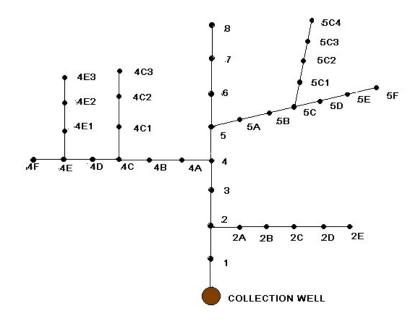
Elements in a Network Modelling

- Point
 - Manhole
 - Pressure junction
 - Junction chamber
 - Catch basin
 - Pump
 - Wet well
 - Pond outlet
 - Outfall

- Line
 - Conduit
 - Channel
 - Pressure pipe
 - Gutter
- Polygon
 - Catchment
 - Pond

Elements in a Network Modelling

Manholes:


- Manholes reference number
- Ground elevation
- Invert elevation
- Manhole inflow

Pipes/conduits:

- Pipe reference number
- Length of the pipe line between manholes
- Diameter of the pipe line
- Material of the pipe line
- Mannings Coefficient ('n' Value)

Outfalls:

- Outfall location
- Ground Elevation.
- Invert Elevation.

Building a Network Modelling & its Process Network Data- System Layout

Data

- coordinates of each pipe segment and manhole
- locations of wet wells, pumps, appurtenances
- *pipe connectivity, lengths
- *pipe diameters, materials
- pipe invert levels and manhole elevations

Hydraulic Properties

Data

Data Sources

pipe roughnesspump curves

manufacturers' specifications
contractor submittals
literature values
field tests

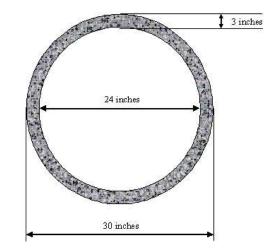
Data Sources

- maps paper/CAD
- construction/as-built drawings
- corporate GIS system
- *asset-management systems
- *work orders
- *field survey data

Sanitary flows

Data

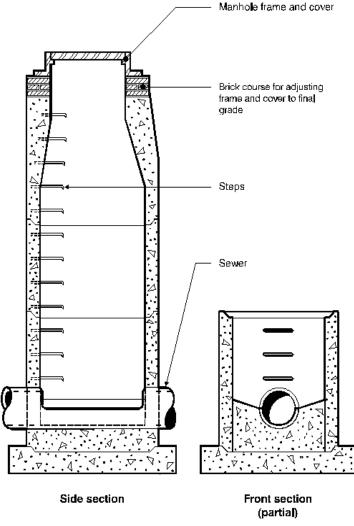
- location of each source
- min, max, mean daily flows
- diurnal patterns
- projections

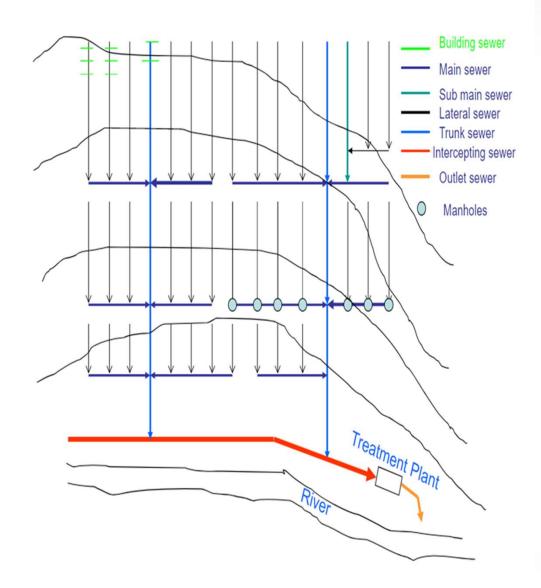

Data Sources

metering maps, aerial photos census data

Building a Network Modelling & its Process

Defining Gravity Pipes


- Internal diameter
- Length (schematic or scaled)
- Material
- Roughness as Manning's n
- Shape
- Invert elevations (set to upstream/downstream pipe)
- Number of sections

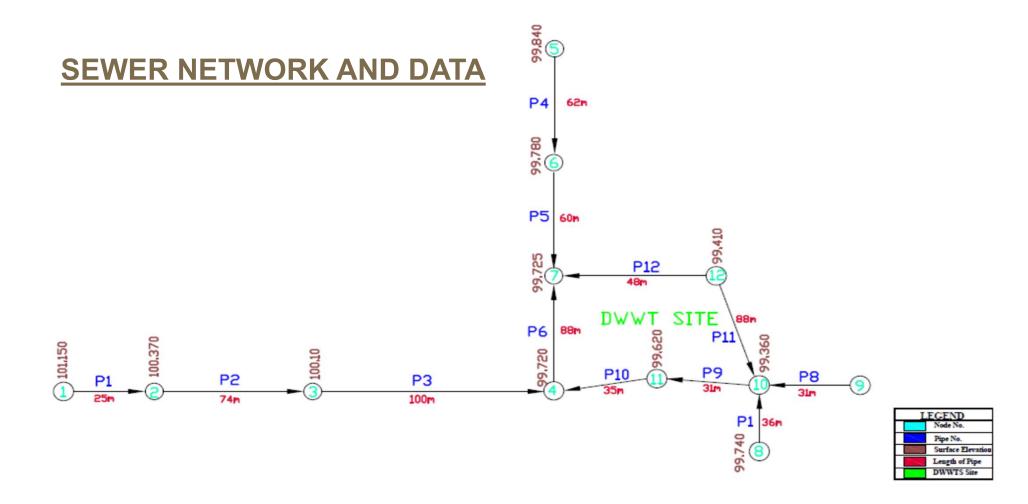

Building a Network Modelling & its Process Defining Manholes

- •Invert elevation- bottom of pipe entering manhole
- •Rim elevation
- •Structure size- common diameter of manholes
- •Drop manhole- incoming sewage transported down vertical shaft

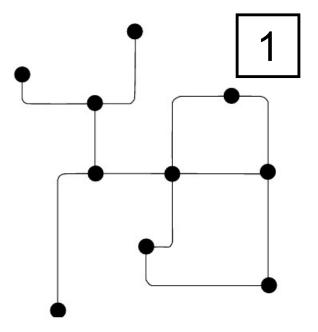
S. No.	Depth (m)	Diameter (mm)				
1	0.90 – 1.65	900				
2	1.65-2.30	1200				
3	2.30-9.0	1500				

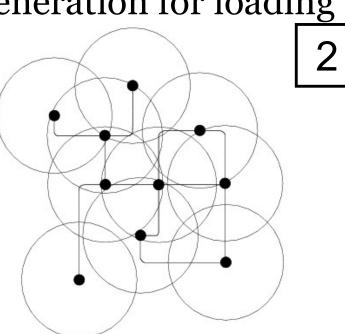
Building a Network Modelling & its Process

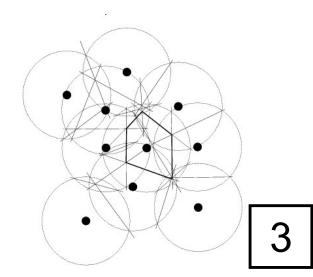
Design, Analysis and Network modelling

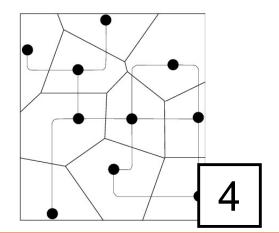

Strategic hydraulic model can be developed using any available Hydraulic modelling latest software (SewerGEms, Excel Spread sheets etc.)

like elevation, Wastewater inflow, peak factor for manholes and diameter, length, manning's (friction) coefficient for the pipes.

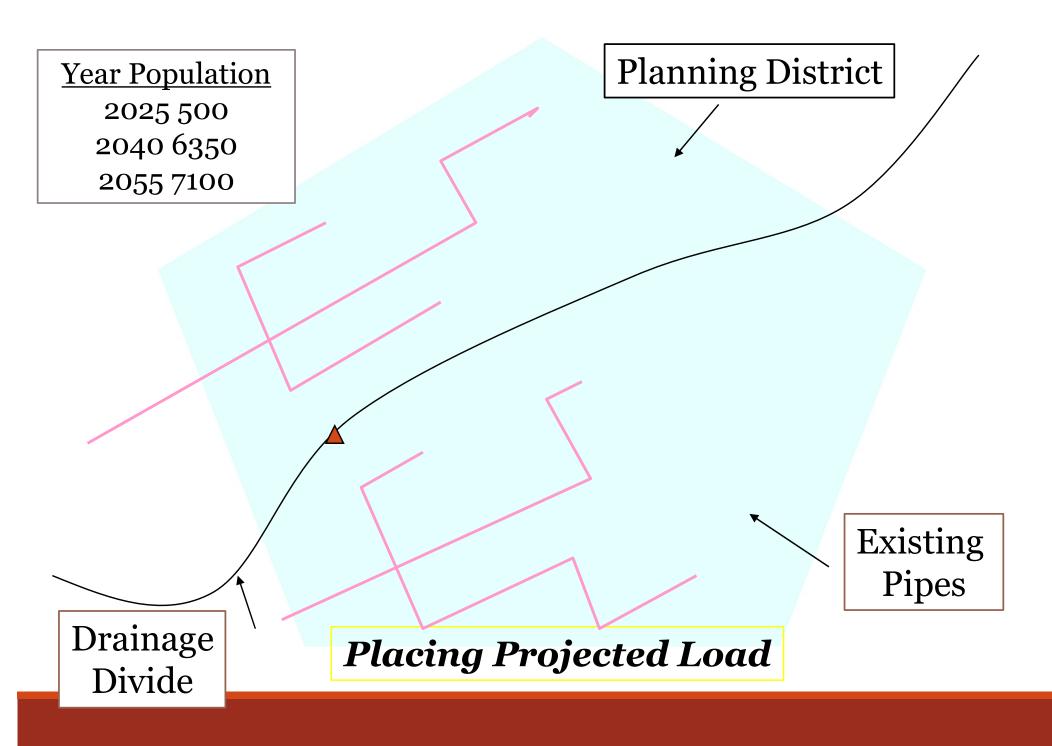

Major Elements in a Hydraulic Model:

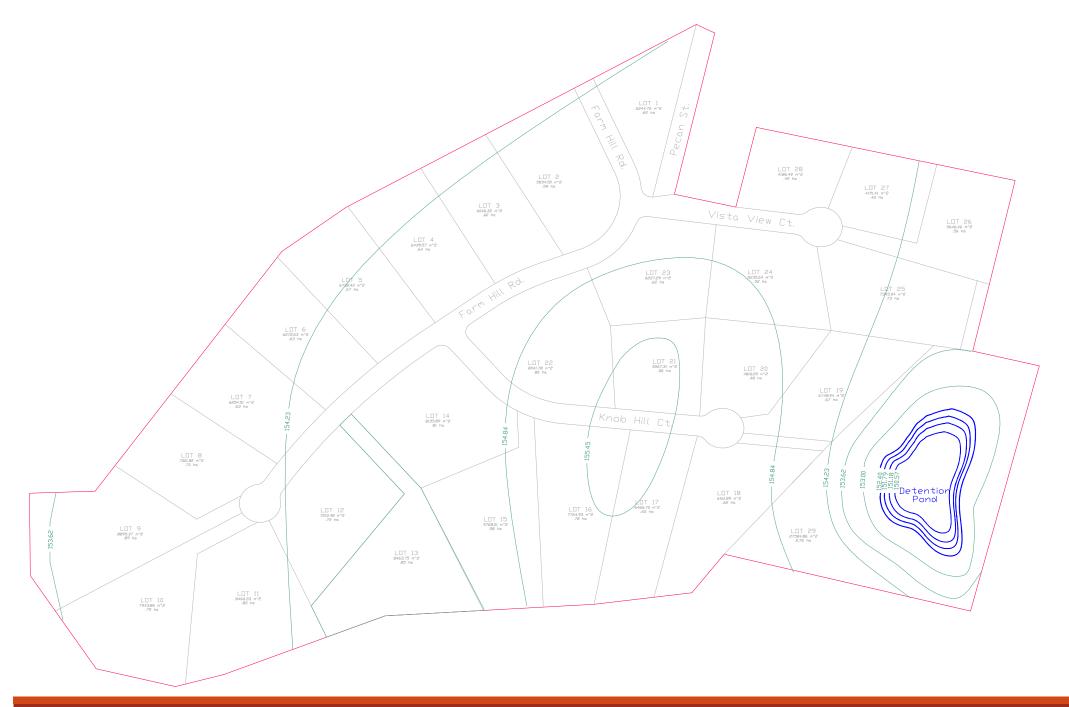

- Manholes
- Pipes
- Outfalls (Wells & Pumping stations)


View Tools otifications ngineering Standards	Report Bentley Cloud Sen	🕅 🥅 🕅	Contours		Search Ribbon (F3)	▲ CONNECT Advisor
igineening standards	Energy Costs More	Graphs Profiles FlexTables Properties 8 Naviga	Refrach T	•		
(1 · · · · · · · · · · · · · · · · · · ·	Analysis Tools	Analysis Views		SCADA		4 Þ
AutomatedDesig	The second se					
Design2	Properties - Solver - Base Calo					1.0
				3260	L mi	
	OF-1	V 🔍 😧 100%	- U.	30		
					1	1
	1 - ↓ - □ Add to Selection			0.24 mar 12		1
	<show all=""></show>		~ B		177.23 17-14.m.1 170'm	1
					75'6	
	Property Search	~	ρ - Q			
CO'd estimate w w	General>				_ / _ / /	
etcana.	ID	15 D. C.L. L.W. O.W.		1 /		
\sim /	Label Notes	Base Calculation Options				
	Active Numerical Solver	GVF-Convex (SewerCAD)		51.25		
\sim	GIS-IDs (Delimited)	Explicit (SWMM Solvers)		01.25 Liberti Tw		/
ai 7	Time Analysis Type	GVF-Convex (SewerCAD) GVF-Rational (StormCAD)		(23) 16-16- 10-		
A AFTE	Calculation Type	Implicit (SewerGEMS Dynamic Wave)				$\langle $
8	 Convex Routing Peak Flow Ratio (%) 	75.0				
5 ×	✓ Gravity Hydraulics	15.0				
~ ~ lo	Active Numerical Solver					
000		rios referencing this calculation option.				
400-	•			8 0		
				184.20 194.20	150.02 1995 1995 1995 1995 1995	
Bt			1			1
© MH		011	LCT 18 #10 21 13 3280		UIII Detention	



Thiessen Polygon Generation for loading





				GL at Respect	ive nodes				
Pipe No. (n)	Upstream_no de No.	Downstream_ node No.	Order of pipe	Upstream (m)	Downstream (m)	Pipeslope (choosen)	Population	Length (m)	D_chosen (m) (Choosen)
1.00	1.00	2	1	101.15	100.37000	0.03120	450	25	0.1
2.00	2.00	3	2	100.37	100.01000	0.00700	554.4	74	0.1
3.00	3.00	4	3	100.01	99.72000	0.00600	283.2	100	0.15
4.00	5.00	6	1	99.84	99.78000	0.02000	222	62	0.1
5.00	6.00	7	2	99.78	99.72500	0.02000	18	60	0.1
6.00	4.00	7	4	99.72	99.72500	0.00350	54	88	0.2
7.00	8.00	10	1	99.3	99.36000	0.01700	276	36	0.1
8.00	9.00	10	1	99.3	99.36000	0.01300	372	36	0.1
9.00	10.00	11	2	99.36	99.62000	0.00600	36	30	0.15
10.00	11.00	4	3	99.62	99.72000	0.00600	12	35	0.15
11.00	12.00	10	1	99.41	99.36000	0.00900	656.4	88	0.1
12.00	12.00	7	1	99.41	99.72500	0.03000	26.4	48	0.1

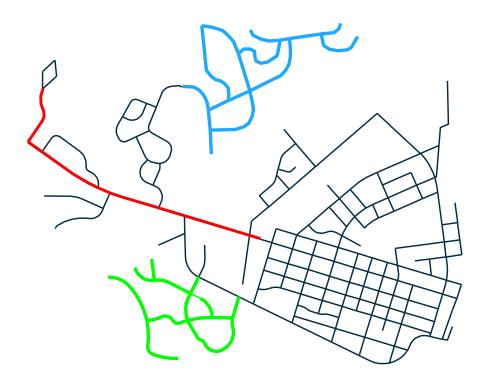
- The sewage generated from an area is collected through a sewer network consists of sewers and conveyed to the sewage pumping station for onward conveyance to the sewage treatment plant for further treatment and disposal.
- The sewer network is formulated with the help of contours. Generally, the sewage pumping station (SPS) is located at low-lying area of the catchments.
- In addition to the contour levels, the distance of the farthest point of the network from the SPS is also taken into consideration while deciding the number of sub-catchment areas or zones of the sewage collection system.
- After formulation of the zones with networks, manholes are marked at every 30 metres apart from junctions and change in directions.
- The network consists of trunk sewer, main sewer, submain, branch, sub-branch and laterals etc. and the line numbers were given accordingly.
- Manhole numbers are assigned based on the line number.
- The nomenclatures of manhole numbers are generally as per the guidelines specified by Central Public Health & Environmental Engineering Organisation (CPHEEO) Manual.

- Select sewage treatment and disposal location depending up on the availability of land or water courses,
- Divide the town into number of zones,
- Factors to be considered in zoning:
 - Railway line, NH, river etc., can be treated as zone boundaries since gravity sewer crossing of these features is expensive.
 - An area of the town having a descending slope can form a zone
 - To restrict the depth of cutting to the pre-determined level (5 to 6m) since excavation under ground water table condition and / or in hard rock is difficult and expensive.
 - The site is available for the pumping station.
 - Exceeding the maximum depth of cutting for short lengths to avoid introduction of lift station is permitted.

- Main pumping station (MPS) is located nearer to the STP site. MPS will collect sewage from all zones and pump to STP
- SPS of one of the zones nearer to STP may be converted as MPS
- Prepare a map of sewer network by aligning the sewer lines in roads along the natural slope of the terrain to drain into the collection well,
- Don't align sewers against the slope and across the ridges
- In exceptional case, aligning across a small ridge is permitted
- Consider subsoil condition and level of ground water table and fix the maximum depth of cutting, which may be 5 to 6m,
- For the assumed zoning, mark the trunk sewer alignment
- By rough calculation assuming an average grade of 1 in 200 calculate the depth of excavation and check with the maximum depth of cutting
- If the calculated depth is within the permissible depth of excavation proceed further for the detailed designing of the collection system adopting the zoning.
- If the calculated depth of cutting exceeds the permissible cutting, revise the zoning of the town, by shifting the location of pumping station or introducing additional pumping station/lift stations.

Scenario Creation and Management

Scenario = single run of model


- -contains type of run
- -points to alternative sets
- Alternatives = data set – building block of scenarios
 - Inheritance = building alternative and scenarios from previous
 - -Add = no data
 - Duplicate = copy but no link
 - Child = link data sets

Scenario Creation and Management

Scenario Management

Current Scenario

Year 2025 Scenario Year 2040 Scenario New Diameter Scenario

Alternatives

Physical: Calibrated Demand: Current Active Topology: Current

Physical: 2025 Inflow: 2025 Active Topology: New 2025

Physical: Extended 2040 Inflow: 2040 Active Topology: New 2040

Physical: New Design Inflow: Max 2055 Active Topology: New 2055

Scenario Management

- Tools > Scenario Comparison
- Pick two scenarios to compare
- View alternative differences
- For any alternative, select GO for element details
- Can create selection set of elements
- Can highlight elements in drawing
- Log the time when comparison done

Select scenarios t	o compare	
Scenario <u>1</u> :	Base	• 🖻
Scenario <u>2</u> :	C=60Base	-)[
		OK Cance

📄 Scenario Comparison (CrystallakePzone.	wtg)		-				
🗋 🗙 🔳 🔁 🖹 🕶 🖬 🥥		€ <mark>N</mark> → ‼N →					
Transient Solver	-	Pipe					
🖻 📳 Base vs. Steady State			Label	Hazen-Williams	Hazen-Williams	Diameter	Diameter
Alternatives				С	С	Base	PZoneExport
Active Topology				Base	PZoneExport	(in)	(in)
		663: P-1000	P-1000	100.0	100.0	8.0	12.0
		698: P-735	P-735	100.0	130.0	12.0	12.0
Operational		699: P-730	P-730	100.0	130.0	12.0	12.0
Age		700: P-725	P-725	100.0	130.0	8.0	8.0
Constituent		701: P-710	P-725	100.0	130.0	8.0	8.0
Trace			P-710 P-705	·····			
Fire Flow		702: P-705		100.0	130.0	12.0	12.0
Energy Cost		703: P-700	P-700	100.0	130.0	12.0	12.0
- Pressure Dependent Demand		704: P-690	P-690	100.0	130.0	8.0	8.0
Transient		705: P-685	P-685	100.0	130.0	12.0	12.0
	E	706: P-695	P-695	100.0	130.0	12.0	12.0
User Data Extensions		707: P-675	P-675	100.0	130.0	8.0	8.0
Calculation Options		708: P-665	P-665	100.0	130.0	8.0	8.0
Steady State/EPS Solver		709: P-660	P-660	100.0	130.0	8.0	8.0
Transient Solver		711: P-650	P-650	100.0	130.0	8.0	8.0
Base vs. PZoneExport		712: P-645	P-645	100.0	130.0	12.0	12.0
Alternatives		713: P-640	P-640	100.0	130.0	12.0	12.0
Active Topology		715: P-635	P-635	100.0	130.0	6.0	6.0
🖃 📥 Physical		844: P-720	P-720	100.0	130.0	8.0	8.0
Differences - 10/7/2009 3:2		845: P-680	P-680	100.0	130.0	6.0	6.0
		847: P-715	P-715	100.0	130.0	6.0	12.0
	Ŧ	853: P-670	P-670	100.0	130.0	8.0	8.0
4 III +							

Review Results

Color Coding/Annotation

Q. D ß

3848: P-368

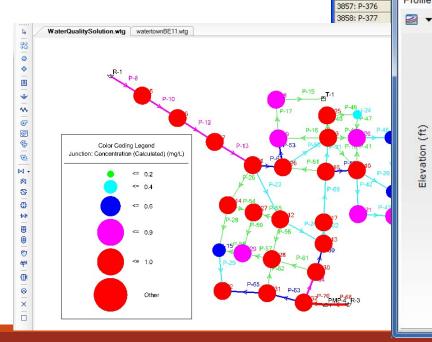
3849: P-369

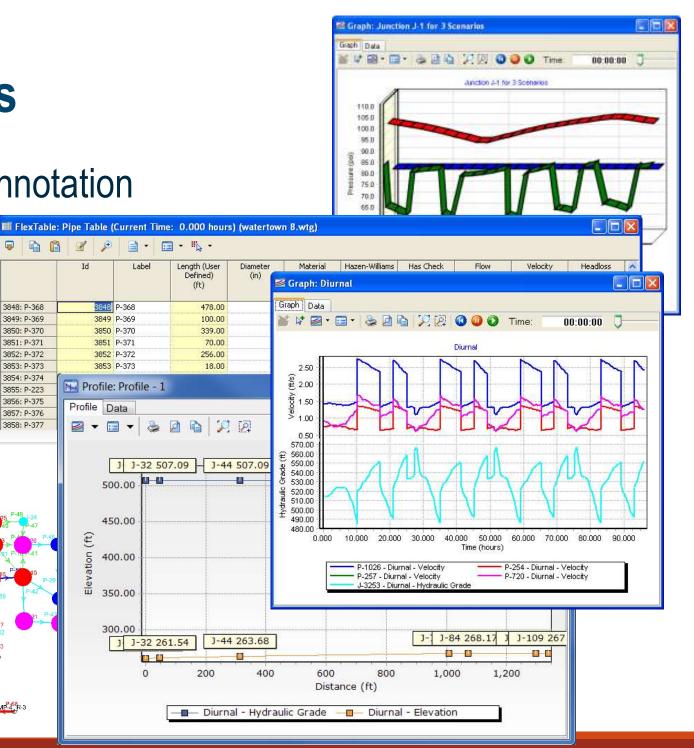
3850: P-370

3851: P-371

3852: P-372

3853: P-373


3854: P-374


3855: P-223

3856: P-375

Id

- FlexTables
- Graphs
- Profiles

HYDRAULIC STATEMENT OF SEWER NETWORK

FlexTable: Conduit Table (Current Time: 0.000 hours) (GeospatialProgress.stsw)

	ID	Label 🔺	Start Node	Set Invert to Start?	Invert (Start) (m)	Stop Node	Set Invert to Stop?	Invert (Stop) (m)	Length (Scaled) (m)	Slope (Calculated) (m/m)	Section Type	Diameter (mm)	Manning's n	Capacity (Full Flow) (L/s)	Notes
221: CO-1	221	CO-1	MH-41	~	92.05	MH-42	~	90.53	85.8	0.018	Cirde	203.2	0.013	45.54	
24: CO-2	324	CO-2	MH-42	~	90.53	MH-44	~	89.76	232.9	0.003	Circle	203.2	0.013	19.67	
10: CO-4	310	CO-4	MH-45	~	94.38	MH-37	2	91.21	172.0	0.018	Circle	203.2	0.013	46.45	
08: CO-5	308	CO-5	MH-37	v	91.21	MH-46	•	89.92	163.6	0.008	Cirde	203.2	0.013	30.38	
91: CO-6	191	CO-6	MH-46	~	89.92	MH-87	1	89.00	59.5	0.015	Circle	203.2	0.013	42.55	
86: CO-7	186	CO-7	MH-87	~	89.00	MH-65	₹	87.48	55.6	0.027	Circle	203.2	0.013	56.59	
201: CO-8	201	CO-8	MH-65	v	87.48	MH-81	I	86.78	65.9	0.011	Circle	203.2	0.013	35.27	
88: CO-9	188	CO-9	MH-81	V	86.78	MH-67	2	86.48	57.5	0.005	Cirde	203.2	0.013	24.71	
27: CO-10	327	CO-10	MH-67	v	86.48	MH-71	~	85.23	244.2	0.005	Circle	203.2	0.013	24.48	
16: CO-11	216	CO-11	MH-71	v	85.23	MH-72	•	84.82	81.8	0.005	Circle	203.2	0.013	24.22	
75: CO-12		CO-12	MH-72	~		MH-73	N	83.06	34.4	0.051		203.2	0.013	77.36	
37: CO-13		CO-13	MH-73	~		MH-23	1	82.92	98.1	0.001		203.2	0.013	12.92	
30: CO-14	330	CO-14	MH-23	v	82.92	MH-22	~	82.64	292.5	0.001	Circle	203.2	0.013	0.013 10.59	
17: CO-15		CO-15	MH-22	V		MH-21	~	81.63	197.3	0.005		203.2	0.013	24.48	
25: CO-16		CO-16	MH-21	v		MH-180		80.41	238.9	0.005		203.2	0.013	24.45	
22: CO-17		CO-17	MH-180	v	1	MH-181	V	79.25	227.9	0.005		304.8	0.013	71.98	
98: CO-18		CO-18	MH-35			MH-33	V	87.31	147.3	0.003		203.2	0.013	19.33	
302: CO-20		CO-20	MH-36	2	10000	MH-37		91.21	151.2	0.008		203.2	0.013	29.71	
.84: CO-21		CO-21	MH-55	V		MH-54	V	85.34	53.7	0.023		203.2	0.013	51.55	
08: CO-22		CO-22	MH-54	v	-	MH-53	~	85.04	75.1	0.004		203.2	0.013	21.62	
93: CO-23		CO-23	MH-53	2		MH-52	V	84.89	60.3	0.002		203.2	0.013	17.06	
33: CO-24	233	CO-24	MH-52	2		MH-51	V	84.73	94.1	0.002	Circle	203.2	0.013	14.11	
44: CO-25	244	CO-25	MH-51	v	84.73	MH-63	v	84.43	104.2	0.003	Circle	203.2	0.013	18.36	
30: CO-26	230	CO-26	MH-63	V	84.43	MH-62	2	84.12	93.3	0.003	Cirde	203.2	0.013	19.72	
26: CO-27	326	CO-27	MH-62	v	84.12	MH-69	~	83.80	242.8	0.001		203.2	0.013	12.42	
32: CO-30	232	CO-30	MH-56	v	85.34	MH-57		84.80	94.1	0.006	Circle	203.2	0.013	25.93	
29: CO-31		CO-31	MH-57	v	1.10000000000	MH-58	V	84.56	92.9	0.003		203.2	0.013	17.40	
17: CO-32		CO-32	MH-58	2		MH-183	2	84.34	84.8	0.003		203.2	0.013	17.43	
20: CO-33	712.01	CO-33	MH-183	2		MH-62	~	84.12	85.2	0.003		203.2	0.013	17.39	
76: CO-35		CO-35	MH-74	2		MH-75	2	83.09	123.5	0.001		203.2	0.013	10.67	
14: CO-36	-	CO-36	MH-75	v		MH-73	V	83.06	80.1	0.000		203.2	0.013	6.62	
95: CO-37		CO-37	MH-68	v		MH-70	2	84.82	143.8	0.006		203.2	0.013	25.99	
48: CO-38		CO-38	MH-70	2		MH-69	2	83.80	105.5	0.010		203.2	0.013	33.65	
18: CO-39		CO-39	MH-184	v		MH-62	<u>v</u>	84.12	84.8	0.025		203.2	0.013	54.34	
77: CO-40		CO-40	MH-49	2	and the second se	MH-50	2	87.66	38.5	0.066	and the second se	203.2	0.013	88.18	
28: CO-41		CO-41	MH-50	<u>v</u>		MH-51	2	84.73	92.6	0.032		203.2	0.013	60.85	
80: CO-42		CO-42	MH-47	<u>v</u>		MH-48	<u>v</u>	90.14	49.0	0.027		203.2	0.013	55.72	
234: CO-43		CO-43	MH-48	<u>v</u>		MH-50	<u>v</u>	87.66	94.3	0.025		203.2	0.013	55.48	

155 of 155 elements displayed

TYPICAL VIEW OF HYDRAULIC PROFILE OF SEWER NETWORK

Benefits & Use of Simulated model results from a Hydraulic model

- > Creation of Digital twins of Sewerage Infrastructures.
- Help in implementing an efficient Sewage collection and conveyance system.
- Rezoning of the Sewerage system with help of Hydraulic modeling.
- To take decision on rehabilitation and replacement of sewer pipes in existing network.
- > To identify defects in sewer network.

<u>Useful References for self learning and training of Hydraulic</u> <u>modelling and design of water supply and sewer network</u>

- 1. https://www.epa.gov/water-research/epanet
- 2. https://epanet22.readthedocs.io/en/latest/5_projects.html
- 3. <u>https://help.innovyze.com/display/infoworksicm/InfoWorks+ICM+Online+Help</u>
- 4. <u>https://www.youtube.com/watch?v=qyA8rleroAs</u>
- 5. <u>https://www.youtube.com/watch?v=QSjgz3FuUZA</u>
- 6. <u>https://communities.bentley.com/products/hydraulics_hydrology/m/hydraulics_and_hydrolog</u> y_gallery/273293
- 7. <u>https://communities.bentley.com/products/hydraulics_hydrology/w/hydraulics_and_hydrology</u> wiki/10096/learning-resource-guide-for-new-users-of-sewergems
- 8. <u>https://www.youtube.com/c/BentleyHydraulicsandHydrologyModeling</u>
- 9. <u>http://cpheeo.gov.in/cms/manual-on-sewerage-and-sewage-treatment.php</u>
- 10. <u>http://cpheeo.gov.in/cms/manual-on-water-supply-and-treatment.php</u>
- 11. <u>https://mohua.gov.in/pdf/624eb498862a7Guidelines-for-Planning-Design-and-Implementation-of-24x7-Water-Supply-Systems.pdf</u>

Thank You !

For further clarifications Contact @ E.Mail : <u>vellaiappan.s@gmail.com</u> LinkedIn : <u>linkedin.com/in/vellaiappan-s-8608281a9</u>