Hydraulic modelling of Water supply Distribution system through modelling software

Creation Of Models

Date of Training : 16.09.2022

Overview

- Model = Software + Data
- Model = Approximation of real world
- Approximation is no more accurate than the data provided
- GIGO: Garbage In = Garbage Out
- Most work involves data collection/checking
- Always check results to make sure they are reasonable

The Modeling Process

#1 Define the Scope

Do you have these parties identified?

#2 Select the Software

- Most software packages work
- Selection criteria:
 - technical features
 - support
 - user interface (look and feel of the software)
 - quality of manuals
 - integration with other software AKA=Interoperability
 - Required effort and time to build the model

#3 Learn how to best utilize the value

#4 Build the Data Model

Model Sources

- Maps basis for representing system
- Use CAD/GIS drawings if available
- Use the latest available maps
- Verify maps with as-built drawings
- Verify with field personnel

#5 Construct the Hydraulic Network

- Convert maps to model
- Manual or automated using CAD / GIS
- Assign node/link identifiers (e.g. numbers or labels)
 - Naming conventions
 - Automatic labeling
 - Auto prompting

Hydraulic Element Types

- Pipe
- Junction
- Fire Hydrant
- Tank
- Hydropneumatic Tank
- Reservoir

- Pump
- Variable Speed Pump Battery
- Valves
 - PRV, PSV, PBV, FCV, TCV,
 GPV
 - Isolation Valve
 - Check Valve
 - Air Valve

Transient Element Types

- Turbines
- Periodic Head-Flow
- Surge Tank
- Rupture Disk

- Discharge To Atmosphere
- Orifice Between Two Pipes
- Valve With Linear Area

Diameter Representation

- Nominal diameters vs. Actual diameters
- Most important in water quality modeling
- Important in small sizes (e.g. sprinklers)

Diameter	ID	OD	Area-Nm	Area-ID	Area-OD
6" DI 50	6.40"	6.9"	28.27 in ²	32.17 in ²	37.39 in ²
6" DI 56	6.04"	6.9"	-	28.65 in ²	32.17 in ²
48" DI 50	49.78"	50.8"	1809.56 in ²	1946.25 in ²	2026.83 in ²
48" DI 56	48.94"	50.8"	-	1881.13 in ²	2026.83 in ²

Length Representation

- Actual not point-to-point
- Schematic vs. Scaled
 - Scaled easier to use
 - Schematic easier to build
- 3 Dimensional length
 - Tools > Options > Project > Use 3D Length
- User defined lengths

Length

Elevation Representation

- Used to convert HGL to pressure
- What reference point do you use?
 - Ground?
 - Pipe?
 - Customer?
- Be consistent

Which reference positions would you select?

Obtain Elevation Data

- Topo Maps
- Surveying
- Digital elevation models (DEM)
- Global Positioning Systems (GPS)
- Altimeter
- Sewer / street maps
- As-builts

Assign Demands

Consider all water use

- Referred to as:
 - Usage
 - Consumption
 - Demand
 - Loading
- Demands are assigned to nodes
- Unaccounted-for water use?

Place Demands at Nodes

- If Q(use) << Q(in) then place demands at nodes
- If there is a significant demand add a node

Steps in Loading Model

- 1. Model at Current year daily average
- 2. Model at Peaking and temporal variations
- 3. Consider Fire flows
- 4. Consider unaccounted for water
- 5. Consider Projections How do you predict the future?

Assign Meters to Nodes

- Assign each meter to "nearest" node
- Automated using georeferenced meters
- Calculate water usage by directly accessing billing data
- Good for historical/current conditions

Nodes	Usage(gpd)
А	2100
В	1500
С	1800
D	400

Distribute Areas to Nodes

- Water usage can be estimated by areas such as census areas or meter routes
- Distribute areal water use evenly among nodes in area
- Assign large water users directly to a single node

•		B		С 🔵	
A	•				
		D 🧶			
Area	Usage (GPD)	No. of Nodes	Usag	e/Node (gpd)	
А	21000	7	3000		
В	20000	4	5000		
С	10000	5	2000		
D	12000	3	4000		

Water Usage by Land Use

- Define water use/acre for each land use
- Define land use pattern ٠
- Assign areas to nodes
- Calculate nodal water use
- Futu •

Commercial

ire land use maps are common	1000 gpd/acre		
A	B C		
High density residential 2000 gpd/acre	Low density resid. 800 gpd/acre		

Acres in land use categories				Usage
Node	Low Den.	High Den.	Comm.	(gpd)
А	0	4	0	8000
В	3	3	0	8400
С	3	0	0	2400
D	0	0	6	6000

Demand Projections

- Spatial and temporal population projections
- Usually provided by city or regional planners
- Get others to "sign off" on population projections
- Where will high growth be? By whom?
- Future water conservation and per capita usage rates

All Pipe Model vs. Skeletonized Model

Accuracy in representing the processes in skeletonized model

Does skeletonized model accurately predict behavior at nodes A and C?

Match the Model to the Application

- Applications that allow greater skeletonization
 - Master planning
 - Regional water quality studies
 - Energy studies
 - System head curves
- Applications that require more pipes
 - Design (in area of interest)
 - Designing flushing programs
 - Detailed water quality studies
 - Near fire flow nodes

#7 Calibrate, Calibrate, Calibrate

Remotely piloted control stations

To fit the characteristics of the hydraulic model to the best representation of the real world

Measurement Devices (Data-Loggers)

#8 Set up and Run the Model

- Steady State or EPS
- Pump Sizing
- Pipe replacement planning
- Calibration & Leakage

- Valve Criticality
- Pressure Dependent
 Demands
- Consider Interoperability
 Workflows with:
 - ArcGIS
 - Stand Alone
 - MicroStation
 - AutoCAD
- Much More...

Thank You ?