
REPORT ON ENERGY AUDIT OF 73 MLD WTP AT PANAMKUTTYMALA UNDER KOTTARAKKARA DIVISION, KWA

TEAM ENERGY AUDIT, KWA NOVEMBER 2021

E

ACKNOWLEDGMENT

We, the team members take this opportunity to express our sincere gratitude to Sri. Venkiteshpathy.S, IAS, MD KWA, who entrusted this assignment and gave timely directions to complete the audit as per schedule. We at KWA consider his leadership and inspiration a privilege.

We would like to express our thanks to Smt. SINDHU J S, AEE, PH Subdivision, Valakom, and Smt. Haisal Harison, AE HW Section, Panamkuttymala, who is in charge of this plant. We also thank all the staff of HW Section, Panamkuttymala, especially the operating staff at the water treatment plant.

We do not have any hesitation that to say, there are very many initiatives is shown from the operations wing at HO to address the energy issues faced by KWA, under the leadership of CE operations and his team. We take the privilege to express our gratitude to them.

As the team leader, I would like to express my gratitude to Sri. Manoj M, EE Sulthan Bathery and Smt. Sreelatha B.V, EE Kollam, who kindly spared their team members so that we could finish the audit on time.

TABLE OF CONTENTS

ACKNOWLED	GEMENT	2
EXECUTIVE SU	JMMARY	5
CHAPTER 1		
1	INTRODUCTION	1
1.1	VISION	2
1.2	MISSION	2
1.3	SLOGAN	2
1.4	SCOPE	2
1.5	ENERGY AUDIT TEAM	2
1.6	ABOUT THE ENERGY AUDIT TEAM, KWA	3
1.7	MAJOR ACTIVITIES OF ENERGY AUDIT TEAM, KWA	3
1.8	METHODOLOGY	3
CHAPTER 2		5
2	WTP PANAMKUTTYMALA	5
2.1	SOURCE	5
2.2	WORKS CAPACITY	5
2.2	RAW WATER QUALITY	6
2.3.1	RESULTS OF RAW WATER ANALYSIS	6
CHAPTER 3	RESOLIS OF RAW WATER ANALISIS	0
3	WATER TREATMENT PROCESS	9
3.1	TREATED WATER QUALITY CRITERIA (LIMITING VALUES)	10
3.2	INLET WORKS	12
3.3	MIXING FLUME	12
3.4	CLARIFLOCULATION	12
3.5	RAPID GRAVITY FILTERS	12
3.6	WASH WATER REUSE	12
CHAPTER 4	WASH WATER REUSE	15
4	CONTROL AND MONITORING SYSYTEMS	13
CHAPTER 5	CONTROL AND MONTORING \$1511EMS	15
5	WATER FLOW DIAGRAMS AND PHOTOS	14
5.1	WATER FLOW DIAGRAMS AND PHOTOS WATER FLOW DIAGRAMS AND PHOTOS	14
5.2	AERATOR	14
5.3	LAMELLAE CLARIFIER	15
5.4	CLEAR WATER PUMP HOUSE	15
5.4 5.5	PRELIMINARY TREATED WATER PUMPING PLANT DRAWING(A)	10
5.6	PRELIMINARY TREATED WATER PUMPING PLANT DRAWING(A) PRELIMINARY TREATED WATER PUMPING PLANT DRAWING(B)	17
5.7	TREATED WATER SYSTEM FLOW/HEAD CURVES	17
5.8	BACKWASH WATER COLLECTION CHAMBER	18
5.8 CHAPTER 6	DACKWASH WATER COLLECTION CHAMDER	19
	ELECTRICAL DIACRAM OF 72 MI D DI ANT	20
6 CHADTED 7	ELECTRICAL DIAGRAM OF 73 MLD PLANT	20
CHAPTER 7	DOWED CHADGE ANALYSIS	01
7 CHADTED 9	POWER CHARGE ANALYSIS	21
CHAPTER 8		22
8 CHADTED 0	KNOW YOUR PLANT STATUS	22
CHAPTER 9		22
9	TRANSFORMERS	23
9.1	CALCULATION FOR TRANSFORMER LOSS OF CAPACITY 1600 Kva	25
CHAPTER 10		0.5
10	STUDY OF PUMPS AND MOTORS	26
10.1	OPERATIONAL PERFORMANCE OF PUMP SETS	27

2

10.1.1	MOTOR AND PUMP PERFORMANCE CHART	27
10.1.2	MOTOR AND FUMP PERFORMANCE CHART	27
10.1.2	MOTOR AND FUMP PERFORMANCE CHART	29 31
10.1.5	EFFICIENCY TESTS FOR PUMP SETS	33
CHAPTER 11	EFFICIENCE TESTS FOR FOMI SETS	55
11	QUANTITATIVE ANALYSIS (WATER)	34
11.1	WATER DISTRIBUTION IN MLD (EXISTING)	34
11.1	WATER DISTRIBUTION IN MLD (PROPOSED)	35
CHAPTER 12	WATER DISTRIBUTION IN WED (I ROTOSED)	55
	LOAD IMPROVEMENTS PROPOSED DUE TO PF & EFFICIENCY	
12	CORRECTION	36
CHAPTER 13	CONNECTION	50
CHAI IER IS	ENERGY DISTRIBUTION AMONG VARIOUS COMPONENTS OF	
13	PLANT	42
13.1	ENERGY DISTRIBUTION CHART	42
CHAPTER 14		
14	SPECIFIC ENERGY CONSUMPTION	43
CHAPTER 15		
15	BENCHMARKING	44
CHAPTER 16		
16	LIGHT LOAD	45
CHAPTER 17		
17	SENSITIZATION PROGRAM FOR STAFF	46
CHAPTER 18		
18	ENERGY CONSERVATION OPTIONS AND RECOMMENDATIONS	47
CHAPTER 19		
19	CONCLUSION	51
ANNEXURE 1	PAYBACK CALCULATIONS	52
	OPERATIONAL OPTIMISATION OF TRANSFORMERS- ONE KEEP AS	
A1.1	STANDBY	52
A1.2	KEEPING AVERAGE WATER LEVEL AS 3.5 AT TWR	53
	ENERGY EFFICIENCY IN EXISTING PUMPING SYSTEM BY	
A1.3	REPLACING INEFFICIENT MOTOR PUMP SET FOR BACKWASH WATER PUMPING	54
A1.5		54
A1.4	SUPPLY AND FIXING OF NEW RECYCLING MOTOR PUMP SETS FOR WASH WATER	55
A1.4		55
A1.5	ENERGY EFFICIENCY IN EXISTING PUMPING SYSTEM BY REPLACING INEFFICIENT MOTOR (No.301)	56
111.J	ENERGY EFFICIENCY IN EXISTING PUMPING SYSTEM BY	50
A1.6	REPLACING INEFFICIENT MOTOR (No.201)	57
ANNEXURE 2	PRELIMINARY AUDIT NOTE	58
MULLAUKE 2		50

 \bigcirc

EXECUTIVE SUMMARY

		Executive Sum	v			
	Consolidated Cost Benefit Ana				-	
	KWA WATER TREAT	MENT PLAN	T, PANAMKUI	TY MALA	L	1
SI.		Investment	Cost savings in			Energy saved in Kwh per
No.	Projects	in Lakhs Rs.	Rs. per year	Pay bac		year
				Year	Month	
	OPERATIONAL OPTIMISATION OF					
	TRANSFORMERS- ONE KEEP AS					
1	STANDBY	0	110814	0	0	19272
	MAINTAINE 3.8 m WATER LEVEL AT					
2	TWR	0	272637	0	0	47415
	REPLACING LESS EFFICIENT BACK					
	WASH WATER MOTOR PUMPSET BY					
	EFFICIENT ONE HAVING 25HP					
3	CAPACITY	380000	545568	0.70	8.4	94881
	SUPPLY AND FIXING OF NEW RE					
	CYCLING MOTOR PUMP SETS FOR					
	WASH WATER @ 30 HP					
4	SUBMERSIBLE	600000	1904257	0.32	3.8	331175
	REPLACING LESS EFFICIENT No.301					
	TREATED WATER MOTOR PUMPSET					
5	BY EFFICIENT ONE @ 300 HP	4800000	2840460	1.69	20.3	493993
	REPLACING LESS EFFICIENT No.201					
	TREATED WATER MOTOR PUMPSET					
6	BY EFFICIENT ONE @ 300 HP	4800000	1742830	2.75	33.0	303101

1. INTRODUCTION

KWA is a PSU under the Govt. of Kerala which is empowered to construct and run the water supply schemes to cater potable water to the public and to construct and run the sewerage schemes in favour of LSGDs. In both cases, the electrical equipment which comes across the different operations in the plant and pumping stations is consuming a tremendous quantity of electricity directly and indirectly. There are 277 HT and more than 2000 LT connections associated with KWA at different pumping stations and WTPs all over Kerala by which more than 3300 MLD water is produced. M/s KWA is liable to pay Rs.3600 million per year to M/s Kerala State Electricity Board Limited. On preliminary study indicates that even the basic principle of energy conservation methodology has not been implemented in our pumping stations owing to a lack of awareness in energy conservation activities. For KWA, the energy audit and water audit are complimentary as both are having the potential to contribute to the existence of KWA. The Govt. of Kerala has formulated the autonomous body to look into the energy audit program in Kerala as the nodal agency, the Energy Management Centre (EMC) is continuously demanding to implement the corrective steps to avoid energy wastages in pumping stations as it is very essential for the financial sustainability of the organization and the prosperity of our nation. It is also realized that the energy audit through the empanelled agencies are more concentrated on energy aspects rather than water wastages as they were less expertise in the latter still it consumes more money and time. The main locations can be identified by audit in both cases viz. the places where less efficiency was reported due to the procedural (operational) errors and the place where losses occurred due to the implementation of outdated technology. It is also taken into consideration that the implementation of advanced technology in this sector will improve the service stability of KWA. The Honourable Managing Director has issued an order to create a team by selecting experienced hands from KWA itself to conduct energy and water audit. The Assistant Engineer in charge of 73 mld WTP at Panamkuttymala had been demanded to conduct the audit at the WTP under her jurisdiction once the order for constituting the audit team by the MD was issued. This is the second assignment of Team, energy audit, Kwa.

1.1 VISION

Promoting good energy management practices in KWA through water and energy audit

1.2 MISSION

Implement energy optimization technologies.

Adopt benchmarking for energy consumption canters of KWA

1.3 SLOGAN

Measure before leave

1.4 SCOPE

The energy audit is concentrating on two aspects viz.

1) Operational optimization

This can be achieved by giving proper training to the staff, implementing a procedural system to fix the responsibility and target the culprits those who are negligent in optimum operation, Transferring technical knowhow to the concerned, which improves the morale also.

2) Technology up gradation

There is high scope for implementing advanced technology in KWA since the energy conservations methodologies are vastly developed in the recent era but still, M/s KWA is running with the conventional mechanism.

1.5 ENERGY AUDIT TEAM

The team members of the energy audit constituted as per order number KWA/JB/EW/EMC/EA/7813/2019 dated 17.09.21 by Managing Director KWA

- 1) Sri. Venkiteswaran B, Head Office Vellayambalam
- 2) Sri. Sajan, S, PH Sub Division, Chavara
- 3) Sri. Salmanul Farisi, P H Sub Division, Chavara
- 4) Sri. Jilson Devasia, P H Section, Sulthanbathery
- 5) Sri. Thomson M. C., P H Section, Mananthavady
- 6) Sri. Sajith K., P H Section, Sulthanbathery

Headed by Sri. Thampy.S, Assistant Executive Engineer, Project Division, Alappuzha

Date of Audit: 25.10.2021 to 30.11.2021

1.6 ABOUT THE ENERGY AUDIT TEAM, KWA

This team consists of six operating staff are having more experience in the water and energy sector with academic qualifications @ M Tech, and B Tech. of mechanical and electrical disciplines and they are working under the leadership of a registered Energy Manager.

1.7 MAJOR ACTIVITIES OF ENERGY AUDIT TEAM, KWA.

- 1) Carry out an energy audit in favour of KWA
- 2) Carry out water audit in favour of KWA
- 3) Study and evaluation of energy audit reports submitted by certified energy auditors.
- 4) Inspect the pumping stations for rectification work on energy related issues.
- 5) Technical support to water authority officers on energy related issues.

1.8 METHODOLOGY

- 1) Survey for requirement
- 2) Data collection
- 3) Planning of audit
- 4) Site observation
- 5) Auditing
 - Power measurement
 - Flow measurement
 - Energy balancing
 - Water balancing
- 6) Determination of opportunities for energy reduction and conservation options.
- 7) Exploiting the possibilities to encourage introducing the technology advancement in water and energy related sector at KWA from the R & D institutions.
- 8) Conducting sensitization programs and making consensus for implementing zero investment recommendations.
- 9) Preparation of draft energy audit report including cost benefit analysis.
- 10) Conducting discussions on the draft report with stakeholders.
- 11) Answering queries.

- 12) Preparation of final report.
- 13) Implementing phase by the competent authority.
- 14) Promoting feedback for further corrective actions.

(Z)

2.1 SOURCE

The source for the Water Supply Scheme is the river Kallada at Tholikode near Punalur in Kollam district. The source is assured due to the K.I.P dam constructed at 22 km upstream of the abstraction point. The 71 Ml/d WTP is located at Panamkuttimala, on a hillock at about 1.6 km from the intake works. (Lattitude 9.0024819, and Longitude 76.9188076)

2.2 WORKS CAPACITY

The 2 Ml/d difference between input and output is due to an allowance for water discharged to waste in desludging clarifiers. Filter wash water will be recycled to the head of the works.

2.3. RAW WATER QUALITY

Details of the raw water analyses taken during the design phase are presented in the table below:

2.3.1 Results of Raw Water Analysis

Name of the											
Scheme	Meenad and adjo	Meenad and adjoining Villages									
Source	Kallada River at	Kallada River at Proposed intake works									
Sampling	15 m from the ri	15 m from the riverbank collected from the surface									
Location											
	Date of Samplin	ng									
		25/10/2	25/10/2	25/10/	25/10/2	25/10	25/10/				
Parameters	Units	021	021	2021	021	/2021	2021				
Colour (True)	Pt-Co Scale					<5	<10				
Turbidity	(NTU)	2.6	2.4	5.1	1.4	2.7	1.5				
рН		7.0	6.8	6.9	6.7	7.0	6.4				
	(micro										
Conductivity	Siemens/cm ²)	38	37	39	37	44	36				
	(mg/l as										
Alkalinity	CaCO ₃)	12	16	14	10	14	13				
	(mg/l as										
Total hardness	CaCO ₃)	10	10	8	11	11	7				
Calcium	(mg/l as	6	4	2	3	2					

hardness	CaCO ₃)						
Chloride	(mg/l as Cl)	13	14	14	12	13	
Sulphate	(mg/l/ as SO ₄)	2	3	4	1	5	
Total Iron	(mg/l as Fe)	1.0	0.8	1.3	1.3	1.0	0.2
Total							
Manganese	(mg/l as Mn)	0.008	0.006	0.0072	0.0078	0.082	
Ammonia	(mg/l as N)	0.02	0.01	0.02	0.01	0.01	
Nitrate	(µg/l)	25	469	498	722	157	
Phosphate	(µg/l)	7	16	115	110	97	
Permanganate							
value	(mg/l as O)	0.04	0.12	3.5	0.9	2.8	
UV							
absorbance	(at 254nm)	0.04	0.04	0.03	0.042	0.046	
Mercury	(mg/l as Hg)	0.00009	ND	ND	ND	ND	
Cadmium	(mg/l as Cd)	ND	ND	ND	ND	ND	

Lead	(mg/l as Pb)	0.029	0.036	0.031	0.034	0.03
Total			21 &	28 &	19 &	15 &
Coliform	(No/100ml)	NS	22	31	20	14
Faecal						
Coliform	(No/100ml)	NS	2&2	2 & 2	3 & 3	4 & 4
Dissolved						
Oxygen	(mg/l)				6.4	7.0
Note :						

 \bigcirc

1. Dissolved Oxygen values are only indicative

2. pH measured in Lab and not at the site, Site value may have been a few decimal points lesser

3. NS- No Sample, ND- Not Detected

3. WATER TREATMENT PROCESS

Raw water is treated to remove dissolved natural color, suspended solids, and iron and to produce water free of pathogenic organisms indicated by the absence of coliform bacteria.

Another requirement is the low aluminium concentration that originates from the aluminium sulphate coagulant when coagulation pH is not within an optimum pre-set range.

As a minimum, the treated water quality will comply with the 'desirable limiting' values given in the Indian Drinking Water Quality Standards, the Manual on Water Supply and Treatment, Ministry of Urban Development, Government of India, 1999.

The treatment processes will be designed to produce treated water that is equal to, if not in many respects, better than the desirable limiting values in the Indian Drinking Water Quality Standards. These will be specified as performance criteria for the takeover of the treatment works following completion. Therefore the works should be operated to achieve these performance standards most of the time, with the 'desirable limiting' values in Indian Drinking Water Quality Standards being satisfied all the time.

Table 2 below lists the treated water quality requirements for assessing the performance of the work, and corresponding 'desirable limiting values' in the Indian Drinking Water Quality Standards (IDWQS). The values are given only for those parameters which are affected by the treatment process in place. Values of other parameters except those which occur in particulate form would be equal to those in the raw water. For comparison, guideline values given by World Health Organisation (WHO) (1993), which are the same as those proposed in the 2004 Guidelines are also listed.

Parameter	Performance Standard to be met in 95% of the sample analyzed.	IndianDrinkingWaterQualityStandard(DesirableLimit) tobe met allthe timeImage: Standard standard	WHO Guideline Values (1993) and those proposed in 2004 Guideline Values
Colour (^o Hazen)	5 ° Hazen	5	Should be colourless
Turbidity (NTU)	1.0	1.0	1.0 Not offensive to consumers
Taste and Odour	Unobjectionable	Unobjectionable	0.3
Iron as Fe (mg/l)	0.1	0.3	0.4
Manganese as Mn (mg/l)	0.05	0.1#	0.2
Aluminium as Al (mg/l)	0.1	0.2#	<8.0 (for disinfection)
рН	pHs ±0.4,pHs being the	6.5 to 8.5	
Total coliform (per	saturation pH value	Nil	Nil
100ml)	Nil	Nil	Nil
Faecal coliform (per 100ml)	Nil	0.2*	>0.5**
Free chlorine (after 30 minutes of effective contact time) (mg/l)	>0.5	0.2	

 \bigcirc

[#] Iron, manganese, and aluminium values of 0.1 mg/l as Fe, 0.05 mg/l as Mn, and 0.03 mg/l as Al gave in IDWQS are too low to comply with. Less stringent values equal to the WHO values will be used.

* The proposed value is low for disinfection. A value of greater than 0.5 mg/l is proposed for 100%ile.

** Ct (C – free residual chlorine concentration in mg/l after a contact time t in minutes) > 15 mg.min/l

The above treated water quality criteria also represent the filter performance except for turbidity, pH, bacteriological quality, and final free chlorine residual. They are influenced by the post filtration treatment. Filtered water turbidity standards will be set at 0.5 NTU (95% ile compliance) and 1 NTU (100% ile compliance).

The performance of clarifiers is defined by the following clarified water quality criteria:

Turbidity: 5 NTU

Colour 5[°]Hazen

Aluminium as Al: 0.5 mg/l

A conventional treatment process using coagulation, flocculation, clarification, rapid sand filtration, and disinfection will be used.

Detailed below are brief descriptions of the adopted treatment process.

- Coagulation by dosing aluminium sulphate,
- Flocculation under moderate intensity mixing conditions,
- Clarification of flocculated water with sludge blanket / Lamella clarifiers,
- Filtration of clarified water by rapid gravity sand filters,
- Disinfection of filtered water by chlorine dosing,
- Final pH-correction by dosing lime,
- Clarifier sludge thickening and settlement in sludge lagoons.

The plant items for the treatment process are briefly described below.

7

3.2. INLET WORKS

The inlet works will comprise an inlet pipe equipped with a magnetic flow meter feeding a cascade aerator with stilling basing. Hydrated lime will be dosed at the aerator inlet. The outlet from the aerator will connect to a channel.

3.3. MIXING FLUME

The channel from the aerator will be provided with a flume where chlorine and hydrated aluminium sulphate flocculants will be dosed. Mixing will be by hydraulic means.

There is a flow division chamber to divide the flow emerging from the flume equally between the clarifiers.

3.4. CLARIFLOCULATION

Clarifiers are the lamella sedimentation type with mechanical flocculates.

The Lamella clarifiers have a settling rate of $0.85 \text{ m}^3/\text{h/m}^2$ of the projected plate area.

In sludge blanket clarifiers, sludge is collected in a series of hoppers placed at the top level of the blanket. The hoppers of each clarifier have separate manifolds.

Lamella sedimentation tanks are provided with sludge scrapers.

Desludging of clarifiers is under the hydrostatic head; the desludging valves are fitted with pneumatic actuators to allow for automatic desludging on timer control

3.5. RAPID GRAVITY FILTERS

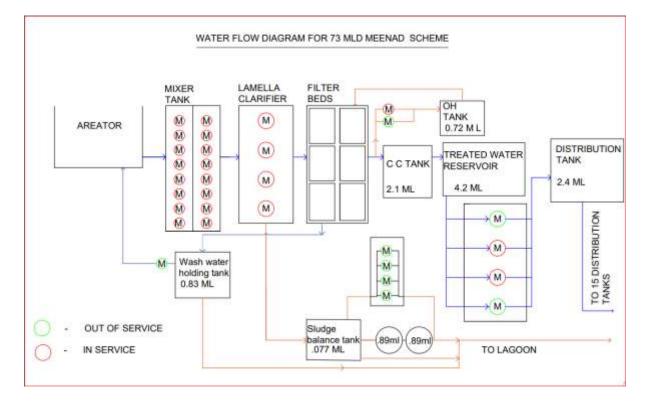
After clarification, the clarified water will flow to the rapid gravity sand filters for the removal of residual suspended solids. The filtration unit will consist of six individual filters, which can be operated independently via motorized valves fitted with electric or pneumatic actuators.

3.6. WASH WATER REUSE

Used wash water from the filters is collected in a tank and pumped to the works inlet chamber, the rate will be less than 5% of maximum works inflow. The tank is provided with two compartments to allow one to be taken out for cleaning.

Two pumps (1 duty, 1 standby) of the Submersible type are provided. The used wash water flow to the works inlet is not carried out since the motor is under repair.

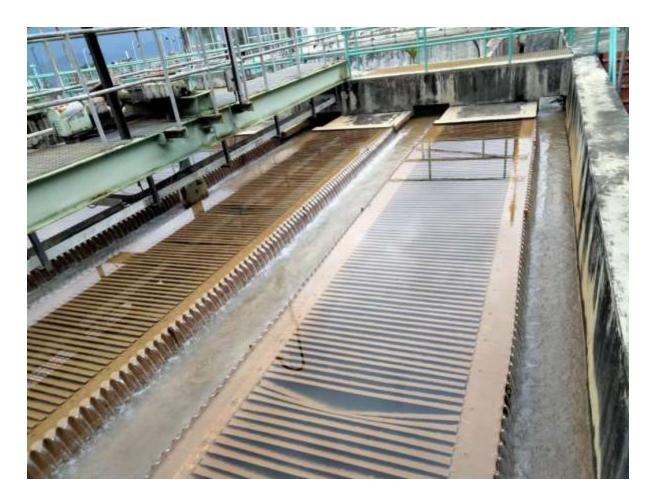
4. CONTROL AND MONITORING SYSTEMS


The treatment works are provided with modern facilities to operate the treatment plant items. A central computer based Supervisory Control and Data Acquisition (SCADA) system will be provided at the water treatment works to monitor alarms, plant status, and analogue signals.

The SCADA system is situated in a dedicated control room in the works administrative building (filter building). The SCADA system receives the data from the works monitoring and control systems, and the raw water pumping station. The raw water pumps are operable from the works control room. Data from the works is relayed to the Regional Control Centre, located at the scheme administrative building.

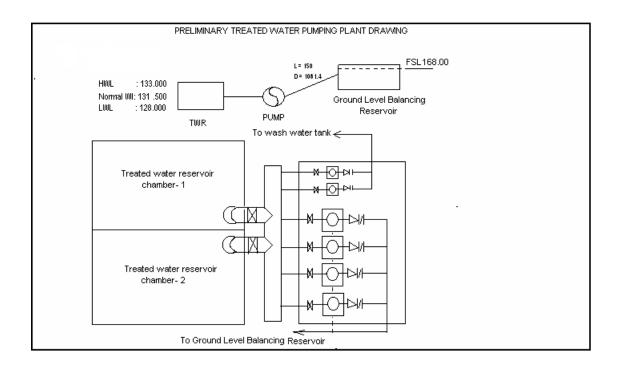
5. WATER FLOW DIAGRAMS AND PHOTOS

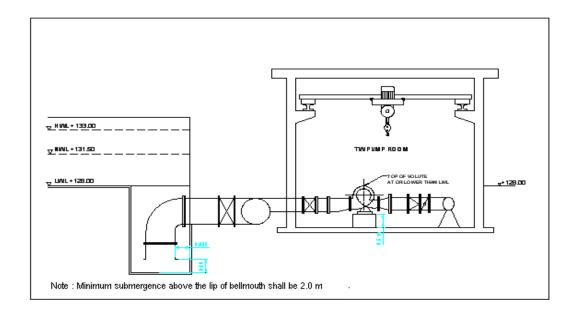
5.1 WATER FLOW DIAGRAM


Water flow diagram for 73 mld meenad scheme

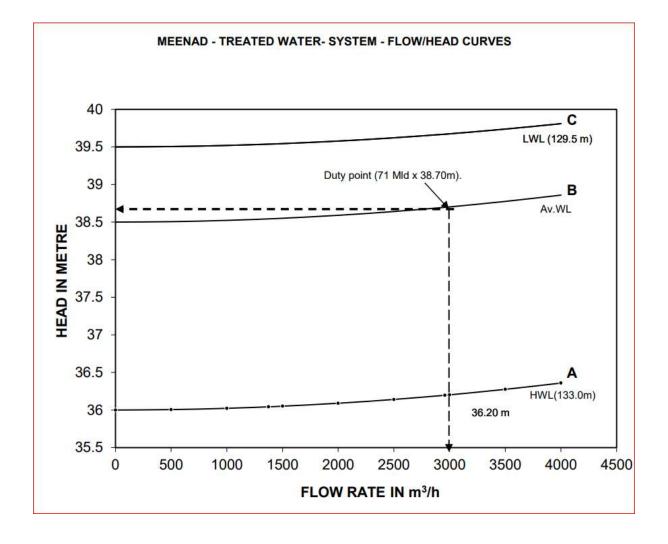
5.2. AERATOR

5.3. LAMELLAE CLARIFIER



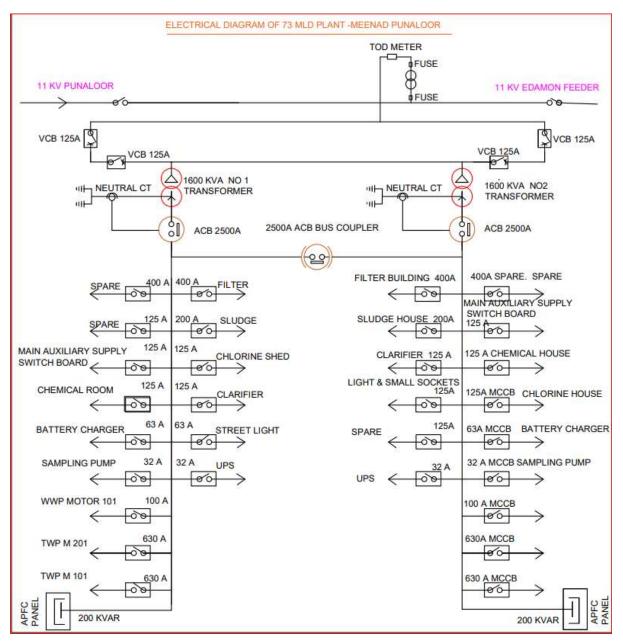

2

5.5 Preliminary treated water pumping plant drawing (A)



5.6. Preliminary treated water pumping plant drawing (B)

5.7. Treated water system flow/head curves

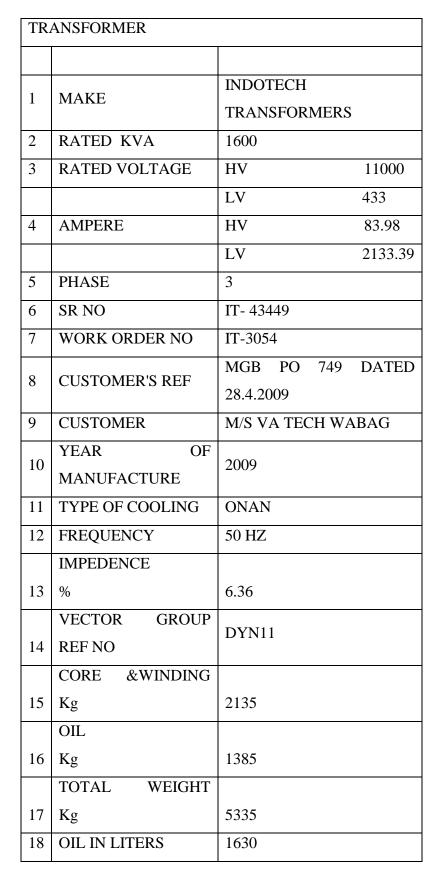


6. ELECTRICAL DIAGRAM OF 73 MLD PLANT

Electrical diagram of 73 mld plant -Meenad Punalur

7. POWER CHARGE ANALYSIS

					F	lectri	city Bi	ill Deta	nils (20	20-2021))				
	Name of the Consumer KERALA WATER AUTHORITY, KWA, HWS Panamkuttymala														
	CONT	RACT L	OAD	774 K	ίVΑ	75%:	=581	С	LEAR W	ATER PUN	IPING				
	Tariff		HT I (A) INDUST	RIAL	Cons num		LCN 17/549 4	KSEB Section	KARAVAL	OOR				
Month		KWh @) Rs5.75			KVA @	Rs.340)							
											charges in		Monthly production		
	Z1	Z2	Z3	Total	Z1	Z2	Z3	Max	PF	Rs.	Rs.	Rs/KWh	in ML	MLD	Rs/MLD
Sep-20	154800	51960	78660	285420	494	531	485	531	0.98	-24617	1849765	6.48	1613.66	176.88	1146.32
Oct-20	161060	55180	75740	291980	497	501	483	501	0.98	-25183	1887739	6.47	1569.03	186.09	1203.12
Nov-20	133120	49120	74480	256720	492	514	500	514	0.98	-22142	1683628	6.56	1552.37	165.37	1084.55
Dec-20	164040	53980	74960	292980	507	506	512	512	0.98	-25270	1893528	6.46	1615.51	181.35	1172.09
Jan-21	157480	52180	80420	290080	507	527	505	527	0.98	-25019	1876740	6.47	1556.1	186.41	1206.05
Feb-21	142940	47440	94480	284860	508	517	501	517	0.98	-24569	1846523	6.48	1520.71	187.32	1214.25
Mar-21	157420	53400	106080	316900	509	505	527	527	0.97	-18222	2041106	6.44	1731.76	182.99	1178.63
Apr-21	157100	51080	105840	314020	527	511	530	530	0.97	-18056	2024351	6.45	1579.2	198.85	1281.88
May-21	137780	49300	72920	260000	599	544	551	599	0.97	-14950	1716210	6.60	1508.48	172.36	1137.71
Jun-21	146100	51020	76400	273520	509	507	499	509	0.99	-31454	1773015	6.48	1453.25	188.21	1220.03
Jul-21	158860	55940	82160	296960	506	525	514	525	0.99	-34150	1908030	6.43	1525.43	194.67	1250.81
Aug-21	150860	51320	78540	280720	517	517	507	517	0.98	-24212	1822558	6.49	1561.33	179.80	1167.31


8. KNOW YOUR PLANT STATUS

PROD	UCTION COST	KNOW	YOUR PLA	NT)			
Produ	iction cost						
Yearly	production in ml	d			19048		
SI. No.	Components Unit		Quantity	Rate in Rs.	Amount in Rs.	Cost in Rs.per mld	Cost in Rs.per kl
	Electrical expenses for raw water pumping (LCN: 17/5433)	Kwh			66765629	3505.13	
1	Electrical expenses for clear water pumping and allied (LCN: 17/5494)	Kwh	3444160	6.48	22318157	1171.68	
2	Salaries				8998566	472.4153	
3	Wages				528296	27.73499	
4	O and M expenditure				9036648.9	474.4146	
	Chemicals					0	
5	Alum	MT	225.495	22243	5015685.29	263.3182	
6	Lime	MT	37.25	12980	483505	25.3835	
7	Chlorine	MT	36	12390	446040	23.41663	
Total					46826897.9	5963.488	5.963488

9. TRANSFORMERS

 \bigcirc

(Z)

9.1 Calculation for transformer loss of capacity 1600 Kva									
				-	-				
Total loss= no load loss +(% of load/100) ² * full load loss									
						Total			
		ge	loss in	loss in	Sub	loss in			
Status		load	Watts	Watts	total	Watts			
Transformer 1 alone in operation			2200	3951		6151			
Transformer 2 alone in Operation		43.4	2200	3951		6151			
Transformer	Transfer mer 1				3189				
I & 2 are Equally Shared	Transfer mer 2	21.7	2200	989	3189	6378			
Load is	Transfer mer 1	43.4	2200	3951	6151				
connected anyone and the other one is in on position (existing)	Transfer					8351			
	d loss in watts Total loss= 1 Status Transformer 1 alone in operation Transformer 2 alone in Operation Transformer 1 & 2 are Equally Shared Load is connected anyone and the other one is in on position	I loss in watts =2200 Total loss= no load log Status Transformer 1 alone in operation Transformer 2 alone in Operation Transformer 1 & 2 are Equally Shared Transfer mer 1 Load is connected anyone and the other one is in on position	Full loaFull loss in watts =2200Full loaTotal loss= no load loss +(% ofTotal loss= no load loss +(% ofPercenta gePercenta geStatusloadTransformer 1 alone in operationofTransformer 2 alone in OperationTransfer mer 1Transformer 1 & 2 are Equally SharedTransfer mer 2Transformer 1 & 2 are Equally SharedTransfer mer 1Load is connected anyone and the other one is in on position (existing)Transfer mer 1	Full load loss inTotal loss= no load loss $+(\% \text{ of } \log 100)^2$ Total loss= no load loss $+(\% \text{ of } \log 100)^2$ PercentaNo loadgeloadWattsStatusloadWattsTransformeralone inof1 alone in43.42200TransformerTransformeralone in2 alone inTransferalone inOperation43.42200TransformerTransfer1 & 2 areTransferEqually SharedTransfer mer 1Load is connected anyone and the other one is in on position (existing)TransferMathematical position (existing)Transfer	d loss in watts =2200Full load loss inTotal ITotal loss = no load loss +(% of load/100)2 # full loadPercentaNo loadLoadPercentaNo loadLoadStatusOfTransformer1 alone in operation043.422003951Transformer 2 alone in OperationTransfer mer 12 alone in Operation43.422003951Transformer 1 & 2 are Equally SharedTransfer mer 121.72200989Transfer mer 221.72200989Load is connected anyone and the other one is in on position (existing)Transfer mer 13951Transfer mer 143.422003951	d loss in watts =2200Full load loss inTotal load in kVTotal loss= no load loss +(% of load/100)2* full load lossTotal loss= no load loss +(% of load/100)2* full load lossPercenta geNo load loss inLoad loss inStatusloadWattsTransformer 1 alone in operation0fTransformer 2 alone in Operation43.4Transformer 1 & 2 are Equally SharedTransfer mer 1Transfer er 1 & 2 are Equally SharedTransfer mer 1Transfer mer 221.722009893189Load is connected anyone and the other one is in on position (existing)Transfer tisting			

 \bigcirc

10. STUDY OF PUMPS AND MOTORS

10.1. OPERATIONAL PERFORMANCE OF PUMP SETS

]	Design/Name	Operating
Utility	Description	Parameters		plate details	details
	Location	MEENAD Jica plant			
General	Application	Clear water pumping	No.201		
	Location ID	73MLD -WTP		plate details Io.201 Io.201 MS Im 1000 Im Im	
	Material		1	MS	
Pipeline	Size		mm	1000	
	Length		М	500	
	Make	Marathon Electric			
	Year of Manufacture	2000			
	Туре	CF			
	ID. No.	275622520003			
	Principle of operation	Squirrel cage induction			
	Power		HP	300	
Motor	Speed		RPM	1488	
WIOTOI	Frequency		Hz	50	
Motor	Voltage		Volt	415	401
	Current		Amps	368	326
	PF				0.97
	Starting mechanism	Soft starter			
	Input		Kw		220
	% of loading of on pump	275622520003 Image: Constraint of the second se		100	
	Make	Kirlosker Brothers			
	Year of Manufacture	2008			
Pumps	Туре	CF-HS			
	ID. No.	1733008008			
Motor	Speed		RPM	1488	

				Design/Name	Operating
	Description	Parameters		plate details	details
	Head		M	38.7	39
	Density		Kg/M3	1000	
	Gravitational Constant		M/s2	9.81	
	Prime mover rating		HP	300	
	Type of control	Throttling			
	Status of valve	Open fully			
	Working Hours		Hrs		16
	% of loading on head		%		100.77519
	% of loading on				
	discharge		%		89.238753
	Output		kW		140
Combined	Efficiency		%		63.636364

 \bigcirc

10.1.2. Mo	otor and Pump performar	nce chart			
				Design/Name	Operating
Utility	Description	Parameters		plate details	details
General		MEENAD Jica			
	Location	plant			
	Application	clearwater pumping	No. 301		
	Location ID	73MLD -WTP			
Pipeline	Material			MS	
	Size		mm	1000	
	Length		М	500	
Motor	Make	Marathon Electric			
	Year of Manufacture	2000			
	Туре	CF			
	ID. No.	2.75623E+11			
		Squirrel cage			
	Principle of operation	induction			
	Power		HP	300	
	Speed		RPM	1488	
	Frequency		Hz	50	
	Voltage		Volt	415	401
	Current		Amps	368	340
	PF				0.97
	Starting mechanism	Soft starter			
	Input	Kw			229
	% of loading on pump	%			104.090909
Pumps	Make	Kirlosker Brothers			
	Year of Manufacture	2008		I	
	Туре	CF-HS			

				Design/Name	Operating
	Description	Parameters		plate details	details
	Speed		RPM	1488	
	Flow/Discharge		M3/Hr	1479.178	1265
	Head		M	38.7	39
	Density		Kg/M3	1000	
	Gravitational				
	Constant		M/s2	9.81	
	Prime mover rating		HP	300	
	Type of control	Throttling			
	Status of valve	Open fully			
	Working Hours		Hrs		24
	% of loading on head		%		100.7751938
	% of loading on				
	discharge		%		85.52047151
	Output		Kw		134
Combined	Efficiency				58.51528384

10.1.3. Motor and Pump performance chart

			Design/Name	Operating
Description	Parameters		plate details	details
	MEENAD			
Location	Jica plant			
	Clear water			
	pumping for			
Application	backwashing			
Location ID	73MLD -WTP			
Material			MS	
Size		mm	150	
Length		М	25	
Make	SEIMENS			
Year of Manufacture	2000			
Туре	CF			
ID. No.	64136042			
Principle of operation	Induction			
Power		HP	25	
Speed		RPM	1463	
Frequency		Hz	50	
Voltage		Volt	415	413
Current		Amps	34	23
PF				0.97
Starting mechanism	Soft starter			
Input				
		Kw		16
	Location Application Location ID Material Size Length Make Year of Manufacture Type ID. No. Principle of operation Power Speed Frequency Voltage Current PF Starting mechanism	MEENADLocationJica plantClear waterpumping forApplicationbackwashingLocation ID73MLD -WTPMaterial	MEENAD Jica plantLocationClear water pumping for backwashingApplicationbackwashingLocation ID73MLD -WTPMaterialISizeILengthMMakeSEIMENSYear of Manufacture2000TypeCFID. No.64136042Principle of operationInductionPowerISpeedIFrequencyVoltVoltageVoltCurrentJPFSoft starterStarting mechanismSoft starter	DescriptionParametersplate detailsMEENAD Jica plantLocationJica plantClear water pumping for backwashingApplication73MLD -WTPMaterialMSSizeMMLengthM25MakeSEIMENSYear of Manufacture2000TypeCFID. No.64136042Principle of operationInductionPowerSpeedVoltageVoltageStarting mechanismSoft starterInput

				Design/Name	Operating
	Description	Parameters		plate details	details
	Make	Kirlosker			
	Year of Manufacture				
	Туре	CF-HS			
	ID. No.	1745608057			
	Speed		RPM	1450	
	Flow/Discharge		M3/Hr	165	107
	Head		M	22	17
	Density		Kg/M3	1000	
Pumps	Gravitational				
	Constant		M/s2	9.81	
	Prime mover rating		HP	25	
	Type of control	Throttling			
	Status of valve	Open fully			
	Working Hours		Hrs		9
	% of loading on head		%		77.27272727
	% of loading on				
	discharge				64.84848485
	Output		Kw		4.9564044
Combined	Efficiency		%		30.9775275

E

10.2. EFFICIENCY TESTS FOR PUMP SETS

		EFFIC	CIENC	CY TES	STS	FOR	PUMP	SET	ГS	
		25-10-20	21	Time	11:00):00 to 1.3	30 pm			
Location	No.	Capacity in HP		INPUT DA	ATAS		OUTPUT DATAS Effic in %			
			Voltage in Volts	Current in Amps	PF		Discharge in M ^{3/} S		OUTPUT in KW	
TWPH	201	300	401	326	0.97	219.62	0.367	39	140.41	63.93
TWPH	301	300	401	401 340 0.97			0.3514	39	134.44	58.69
BWPH	201	25	413	23	0.97	15.96	0.02972	17	4.96	31.06

11. QUANTITATIVE ANALYSIS (WATER)

11.1.Water dis	11.1.Water distribution in mld (Existing) One year average										
Raw water	Backwash water	Clear water	Recycled water								
54.473	2.568	52.18563889	0								

11.2. WATER DISTRIBUTION IN MLD (PROPOSED)

Raw water	Backwash water	Clear water	Recycled water	Consumed backwash water
water				
52.473	2.568	52.18563889	2	0.568
			■ Clear ■ Recyc	water Sled water
			Const	umed backwash water

12. LOAD IMPROVEMENTS PROPOSED DUE TO PF & EFFICIENCY CORRECTION

LOA	LOAD IMPROVEMENTS PROPOSED DUE TO PF & EFFICIENCY CORRECTION										
SL.	MAKE	VO	Α	Η	K	dby	Р.	Motor	AREA	PROP	Perce
No.		LT	MP	Р	W		F	name		OSED	ntage
			S							LOAD	of
											load
											sharin
											g
1	SIEME	415	4.4	3	2.	SERVI	0.	Floccul		1.93	0.33
	NS	Δ			2	CE	85	ator			
2	SIEME	415	4.4	3	2.	SERVI	0.	Floccul		1.93	0.33
	NS	Δ			2	CE	85	ator			
3	SIEME	415	4.4	3	2.	SERVI	0.	Floccul		1.93	0.33
	NS	Δ			2	CE	85	ator			
4	SIEME	415	4.4	3	2.	SERVI	0.	Floccul		1.93	0.33
	NS	Δ			2	CE	85	ator			
5	SIEME	415	4.4	3	2.	SERVI	0.	Floccul		1.93	0.33
	NS	Δ			2	CE	85	ator			
6	SIEME	415	4.4	3	2.	SERVI	0.	Floccul		1.93	0.33
	NS	Δ			2	CE	85	ator			
7	SIEME	415	4.4	3	2.	SERVI	0.	Floccul		1.93	0.33
	NS	Δ			2	CE	85	ator			
8	SIEME	415	4.4	3	2.	SERVI	0.	Floccul	FLOCCU	1.93	0.33
	NS	Δ			2	CE	85	ator	LATOR		
9	SIEME	415	4.4	3	2.	SERVI	0.	Floccul	MOTOR	1.93	0.33
	NS	Δ			2	CE	85	ator			
10	SIEME	415	4.4	3	2.	SERVI	0.	Floccul		1.93	0.33
	NS	Δ			2	CE	85	ator			
11	SIEME	415	4.4	3	2.	SERVI	0.	Floccul		1.93	0.33
	NS	Δ			2	CE	85	ator			

E

12	SIEME	415	4.4	3	2.	SERVI	0.	Floccul		1.93	0.33
	NS	Δ			2	CE	85	ator			
13	SIEME	415	4.4	3	2.	SERVI	0.	Floccul		1.93	0.33
	NS	Δ			2	CE	85	ator			
14	SIEME	415	4.4	3	2.	SERVI	0.	Floccul		1.93	0.33
	NS	Δ			2	CE	85	ator			
15	SIEME	415	4.4	3	2.	SERVI	0.	Floccul		1.93	0.33
	NS	Δ			2	CE	85	ator			
16	SIEME	415	4.4	3	2.	SERVI	0.	Floccul		1.93	0.33
	NS	Δ			2	CE	85	ator			
17	CROM	415	2.0	1	0.	SERVI	0.	Clarifier		0.63	0.11
	PTON		star		75	CE	81				
	GREA										
	VES										
18	CROM	415	2.0	1	0.	SERVI	0.	Clarifier		0.63	0.11
	PTON		star		75	CE	81				
	GREA										
	VES										
19	CROM	415	2.0	1	0.	SERVI	0.	Clarrifie	CLARIFI	0.63	0.11
	PTON		star		75	CE	81	r	ER		
	GREA								MOTOR		
	VES										
20	CROM	415	2.0	1	0.	SERVI	0.	Clarifier		0.63	0.11
	PTON		star		75	CE	81				
	GREA										
	VES										
21	SIEME	415	7		3.	SERVI	0.	Air	FILTER	3.28	0.56
	NS	Δ			7	CE	86	compres	HOUSE		
								sor			
22	SIEME	415	7		3.	S/B	0.	Air	COMPRE		0.00
	NS	Δ			7		86	compres	SSOR		
								sor	MOTOR		
23	SIEME	415	96	7	55	SERVI	0.	Air		48.20	8.26

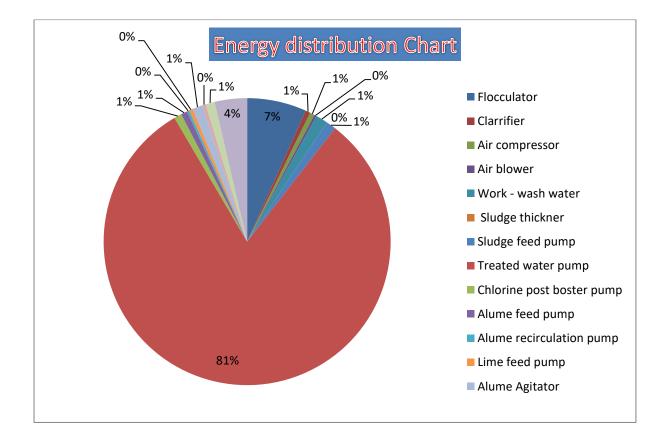
37

	NS			4		CE	85	blower			
24	SIEME	415	96	7	55	SERVI	0.	Air	FILTER	48.20	8.26
	NS			4		CE	85	blower	HOUSE		
									BLOWER		
25	SIEME	415	96	7	55	S/B	0.	Air	MOTOR		0.00
	NS			4			85	blower			
26	SIEME	415	34	2	18	SERVI	0.	Works		14.97	2.57
	NS	Δ		5	.5	CE	83	water			
27	SIEME	415	34	2	18	S/B	0.	Works	WASH		0.00
	NS	Δ		5	.5		83	water	WATER		
									MOTOR		
28	CROM	415	2.0	1	0.	SERVI	0.	SLUDG		0.63	0.11
	PTON		star		75	CE	81	Е			
	GREA							THICK			
	VES							NNER			
29	CROM	415	2.0	1	0.	SERVI	0.	SLUDG	SLUDGE	0.63	0.11
	PTON		star		75	CE	81	Е	THICKN		
	GREA							THICK	NER		
	VES							NNER			
30	SIEME	415	4.5	3	2.	SERVI	0.	Sludge		1.93	0.33
	NS				2	CE	85	feed			
								pump			
31	SIEME	415	4.5	3	2.	SERVI	0.	Sludge		1.93	0.33
	NS				2	CE	85	feed			
								pump			
32	SIEME	415	4.5	3	2.	SERVI	0.	Sludge	SLUDGE	1.93	0.33
	NS				2	CE	85	feed	FEED		
								pump	MOTOR		
33	SIEME	415	4.5	3	2.	SERVI	0.	Sludge		1.93	0.33
	NS				2	CE	85	feed			
								pump			
34	MARA	415	368	3	22	SERVI	0.	Treated		186.65	32.00
	THON			0	0	CE	87	water			

				0				pump			
35	MARA	415	368	3	22	SERVI	0.	Treated		186.65	32.00
	THON			0	0	CE	87	water			
				0				pump			
36	MARA	415	368	3	22	S/B	0.	Treated	TREATE		0.00
	THON			0	0		87	water	D		
				0				pump	WATER		
37	MARA	415	368	3	22	S/B	0.	Treated	PUMP		0.00
	THON			0	0		87	water			
				0				pump			
38	KIRSO	415	4.2	3	2.	SERVI	0.	Chlorin		1.97	0.34
	LKAR				2	CE	87	e pre			
	BROTH							booster			
	ERS							pump			
	LTD										
39	KIRSO	415	4.2	3	2.	SERVI	0.	Chlorin	CHLORI	1.97	0.34
	LKAR				2	CE	87	e post	NE		
	BROTH							booster	PLANT		
	ERS							pump			
	LTD										
40	KIRSO	415	4.2	3	2.	S/B	0.	Chlorin			0.00
	LKAR				2		87	e post			
	BROTH							booster			
	ERS							pump			
	LTD										
41	SIEME	415	7	5	3.	SERVI	0.	Alume		3.28	0.56
	NS				7	CE	86	feed			
								pump			
42	SIEME	415	7	5	3.	S/B	0.	Alume	ALUM		0.00
	NS				7		86	feed	PLANT		
								pump			

39

43	SIEME	415	3.5	2	1.	SERVI	0.	Alume		1.25	0.21
	NS				5	CE	81	recircul			
								ation			
								pump			
44	SIEME	415	3.5	2	1.	S/B	0.	Alume			0.00
	NS				5		81	recircul			
								ation			
								pump			
45	SIEME	415	4.4	3	2.	SERVI	0.	Lime	LIME	1.93	0.33
	NS				2	CE	85	feed	PLANT		
								pump			
46	SIEME	415	4.4	3	2.	S/B	0.	Lime			0.00
	NS				2		85	feed			
								pump			
41	SIEME	415	4.4	3	2.	SERVI	0.	Alume		1.95	0.33
	NS				2	CE	86	Agitator			
42	SIEME	415	7	5	3.	SERVI	0.	Alume		3.28	0.56
	NS				7	CE	86	Agitator			
43	SIEME	415	3.5	2	1.	SERVI	0.	Lime	ALUM	0.92	0.16
	NS				1	CE	81	agitator	PLANT		
44	SIEME	415	3.5	2	1.	SERVI	0.	Lime		0.92	0.16
	NS				1	CE	81	agitator			
45	KIRLO	415	40.	3	22	NOT	0.	Recycli	RE	18.67	3.20
	SKER		0	0	.0	IN	87	ng	CYCLIN		
						SERVI			G TANK		
						CE					
46	KIRLO	415	40.	3	22	NOT	0.	Recycli			0.00
	SKER		0	0	.0	IN	87	ng			
						SERVI					
						CE					
	LIGHT				16					16.82	2.88
	LOAD				.8						
	TOTAL				12						0.00


KW		28				
TOTAL		69			583.23	100.0
KW IN		8				0
SERVI						
CE						

13. ENERGY DISTRIBUTION AMONG VARIOUS COMPONENTS OF PLANT

	Energy distribution among the various components of plant																
	Flocculator	Clarrifier	Air compressor	Air blower	Work - wash water	SLUDGE THICKNNER	Sludge feed pump	Treated water pump	Chlorine post boster pump	Alume feed pump	Alume recirculation pump	Lime feed pump	Alume Agitator	Lime agitator	Re cycling	Light load	Total
Rated power requirement in Kw	30.85	2.51	3.28	96.39	14.97	1.25	7.71	373.31	3.95	3.28	1.25	1.93	5.23	1.84	18.67	16.82	
Operating time(in hours) per day	24	24	18	0.3	10	0	16	24	24	24	24	24	24	24	6	24	
Energy consumptio n in kWH per day	740.29	60.12	59.05	28.92	149.74	0.00	123.38	8959.38	94.71	78.73	30.06	46.27	125.54	44.09	111.99	403.66	11055.93

13.1 ENERGY DISTRIBUTION CHART

14. SPECIFIC ENERGY CONSUMPTION

The existing specific energy consumption is 183.36 kWh per mld of water for the entire process of filtration of daily production of 52.19 mld against the rated discharge of 71 mld. The specific energy consumption can be reduced to 150 kWh per mld of water filtration once the recommendation is executed.

15. BENCHMARKING

BENCHMARKING									
Existing design load in Kw	Average load in kW	Design load proposed in kW							
698	539	583							
Note; It is ascertained that the	e existing average load	is comparatively less due to the							
operation of the plant in a less	ser capacity								

16. LIGHT LOAD

LIG	HT LOAD				
SL NO		WATT	UNIT	QUANTITY	TOTAL (Watts)
	LIGHT LOAD IN CLARIFIER AND GALLERY				
1	MERCURY LAMP	70	Nos	25	1750
	CHLORINE SHED				0
1	MERCURY LAMP	70	Nos	5	350
	USED WASH WATER TANK				0
1	MERCURY LAMP	70	Nos	3	210
2		15	Nos	3	45
	FILTER BED AND GALLERY				0
1	MERCURY LAMP	70	Nos	59	4130
2	TUBE LIGHT	40	Nos	3	120
3	STREET LIGHT	200	Nos	6	1200
	BLOWER ROOM				0
1	FLUORESCENT TUBE	40	Nos	7	280
	LAB AND OFFICE ROOM				0
1	FLOURESENT TUBE	40	Nos	38	1520
2	FLOURESENT TUBE	60	Nos	3	180
					0
1	A/C 2 TON	3516.85	Nos	2	7033.7
	Total				16818.7

There was no wide level of acceptance for energy audit as it was mistakenly interpreted as energy audit is a fault-finding mechanism similar to other audits. The success of any audit is depended on the transparency and the involvement of the stakeholders. The cooperation and coordination among the staff are very essential for the collection of data as well as for the successful implementation of the audit report. During the awareness camp the Assistant Engineer Smt. Haisal Harison and operating staff were present. The discussions were fruitful and the confidence among the staff was improved. The preliminary recommendations were also discussed and ensured cooperation for implementing the same.

18. ENERGY CONSERVATION OPTIONS AND RECOMMENDATIONS

18.1) OPERATIONAL OPTIMISATION OF TRANSFORMERS- ONE KEEP AS STANDBY

There are two numbers Transformers @1600 KVA each to step down the transmission voltage. On verification, it is understood that both transformers are in the ON position. On comparison of different options of operations with the no-load and load losses, it is realized that it could be better to operate as one must be kept as stand by. The savings in respect of finance and energy is postulated in the calculation sheet of the executive summary. This is the zero investment recommendation. It is also proposed to change over the utilization of each transformer once in two months to ensure both are operating frequently.

18.2) INCREASING OF AVERAGE WATER LEVEL TO 0.5 M IN THE TWR

It is observed that the average water level maintained in the Treated water reservoir is below 3 m against the maximum level of 4.3 m. On experiment, it is realized that it could be easy to increase the average water level to 3.5 m to reduce the pumping charge. The savings in respect of finance and energy is postulated in the calculation sheet of the executive summary. This is the zero investment recommendation

18.3) REPLACING LESS EFFICIENT BACKWASH WATER MOTOR PUMP SET BY EFFICIENT ONE HAVING 25HP CAPACITY.

On efficiency test of backwash water pump sets, it realized that this mechanism is performing with very low efficiency i.e. 31%. It is recommended to replace the same with a more efficient one. The savings in respect of finance and energy is postulated in the calculation sheet of the executive summary.

18.4) SUPPLY AND FIXING OF NEW RECYCLING MOTOR PUMP SETS FOR WASH WATER @ 30 HP SUBMERSIBLE.

The existing mechanism to recycle the wash water @ 2 mld is not working as the motor pump sets are under repair. The water available @ 2 mld at 120 m head is draining out without recycling even the structure for the same is already available. This proposal is to utilize this water to reduce the pumping cost at raw water pumping stations however less quantity energy has to consume additionally at the clear water pumping station. The detailed payback calculation is accompanied by executive summary.

18.5) REPLACING LESS EFFICIENT No.301 TREATED WATER MOTOR PUMPSET BY EFFICIENT ONE @ 300 HP.

The motor pump sets for clear water pumping is the main energy drawing machinery in the wtp. On the efficiency test, it is observed that the efficiency is only 59 % for this pump set. It is recommended to replace the same with most efficient on. The savings in respect of finance and energy is postulated in the calculation sheet of the executive summary.

18.6) REPLACING LESS EFFICIENT No.201 TREATED WATER MOTOR PUMPSET BY EFFICIENT ONE @ 300 HP

The motor pump sets for clear water pumping is the main energy drawing machinery in the wtp. On the efficiency test, it is observed that the efficiency is only 64 % for this pump set. It is recommended to replace the same with most efficient on. The savings in respect of finance and energy is postulated in the calculation sheet of the executive summary.

18.7) GENERAL RECOMMENDATION FOR THE OPERATION MOTORS

Inadequate maintenance of motors can significantly increase losses and lead to unreliable operation. For example, improper lubrication can cause increased friction in both the motor and associated drive transmission equipment. Resistance losses in the motor, which rise with the temperature, would increase. Providing adequate ventilation and keeping motor cooling ducts clean can help dissipate heat to reduce excessive losses. The life of the insulation in the motor would also be longer: for every 10o C increase in motor operating temperature over the recommended peak, the time before rewinding would be needed is estimated to be halved.

A checklist of good maintenance practices to help ensure proper motor operation would include:

1. Inspect motors regularly for wear in bearings and housings (to reduce frictional losses) and for dirt/dust in motor ventilating ducts (to ensure proper heat dissipation).

2. Checking load conditions to ensure that the motor is not over or under-loaded. A change in motor load from the last test indicates a change in the driven load, the cause of which should be understood.

3. Lubricating appropriately. Manufacturers generally give recommendations for how and when to lubricate their motors. Inadequate lubrication can cause problems, as noted above. Over lubrication can also create problems, e.g. excess oil or grease from the motor bearings can enter the motor and saturate the motor insulation, causing premature failure or creating a fire risk.

4. Checking periodically for proper alignment of motor and the driven equipment. This is the zero investment recommendation. Improper alignment can cause shafts and bearings to wear quickly, resulting in damage to both the motor and the drive equipment.

- 5. Ensuring that supply wiring and terminal box are properly sized and installed. Inspect regularly the connections at the motor and starter to be sure that they are clean and tight.
- 6. Valve operation has to be ensured on starting and stopping of the motor to ensure the low load on starting and to protect the motor from backpressure respectively.
- 7. The logbook has to be maintained in such a way that the voltage and current of every hour are documented so that to avail the same for future references.

18.8) SUBSTITUTION BY SOLAR POWER

The possibility for renewable energy (solar) to meet the demand for light load @ 20 KVA can also be explored, depending on the availability of the required intensity of sun rays throughout the day/year.

19. CONCLUSION

The objective of the study was to delineate the issues in energy consumption of wtp, to optimize the method of operation, to understand the extent of deviation from the standard of operation, and to explore the possibility of adopting advanced technologies in our sector. On evaluation, it may be realized that each power utility center has a unique optimization need. It is also realized that the present specific energy consumption of wtp is 183.36 kWh per MLD. The kWh per MLD consumption is comparatively low in the filter house as the head creation required is less. Benchmarking for energy use has been proposed and it can be achieved by introducing the proposed operating procedure.

This plant is constructed on proper planning and operating with proper procedure, still, we have energy saving options to be implemented which are listed for implementation.

In addition, the effect of the implementation of zero investment recommendations can be viewed by comparing the energy bills of the pre-and post- audit months.

ANNEXURE 1

A.1.1 PAYBACK CALCULATIONS

OPERATIONA	L OPTIMISAT	ION OF	TRANSF	ORMER	S- ONE	
KEEP AS STANDBY						
	1	1			r	
		No load		Total		
		loss in		Loss in		
		Watts	Watts	Watts		
Load status	Load is	4400	3951	8351		
	connected to					
	anyone and					
	the other one					
	is in On					
	position					
	(existing)					
	Transformer	2200	3951	6151		
	No.1 or No.2					
	alone in					
	operation					
	latter in the					
	off position					
Savings in kW					2.2	
No. working					8760	
Hours per year						
Energy savings					19272	
per year in kWh						
Cost in Rs. per					5.75	
kWh						
Amount					1.10814	
Savings in						
Lakhs per year						

	Description	T T •/	Old	New
	Unit	Unit	System	System
	Average Suction level of	m	3	3.5
	Treated water Reservoir	m	3	
	Head	m	38.7	38.2
	Flow	m ³ /s	0.822	0.822
Requirement	Density of water	kg/m3	1000	1000
	Gravitational Constant	m/s ²	9.81	9.81
	Hydraulic Power is required to meet the demand by existing pump set	kW	312.07	308.04
	TotalElectricalPowerdrawntomeettherequirement	kW	418.94	413.53
	Unit Cost for power	Rs./kWh	5.75	5.75
	Annual operating Hours	Hours	8760	8760
	Annualenergyconsumption	kWh /year	3669931	3622516
	Annual power Savings, kWh	kWh		47415.1
	Annual Savings	Rs. In Lakhs		2.72637
	Investment required in Lakhs	Rs, in lakhs		0
	Simple Payback period	In years		0
		In months		0

A1.3

Ener	Energy Efficiency in Existing Pumping system by replacing inefficient motor					
Pum	p set for backwash water pumping					
	Description Unit	Unit	Old	New		
		Omt	System	System		
	Type of Motor	Induction				
	Class of Motor		Standard	IE2		
	Motor power (rated)	Kw	18.5	18.50		
	Efficiency (rated)	%	95.5	95.50		
	Combined system efficiency of the	%	31.06			
	system (measured)					
	Pump efficiency	%		78.00		
	The combined efficiency of the	%	70			
	system (rated)	70	10	74.49		
	Head	m	22	22.00		
nent	Flow	m ³ /s	0.045833	0.05		
Requirement	Density of water	kg/m3	1000	1000.00		
Requ	Gravitational Constant	m/s ²	9.81	9.81		
	Hydraulic Power, required to meet	kW	9.89	9.89		
	the demand by existing pump set	K VV		7.07		
	Total Electrical Power drawn to	kW	31.85			
	meet the requirement	K VV	51.05	13.28		
	Unit Cost for power	Rs./kWh	5.75	5.75		
	Annual operating Hours @14 hrs	Hours	5110			
	per day	nouis	5110	5110.00		
	Annual energy consumption	kWh /year	162738.168	67856.73		
	Annual power Savings, kWh	kWh		94881.44		
	Annual Savings	Rs. In				
		Lakhs		5.46		
	Proposed load	Kw		18.50		
	Investment required in Lakhs	Rs, in		3.80		

@15225 / hp	lakhs	
Simple Payback period	In years	0.70
	In months	8.36

A1.4

SUPPLY AND FIXING OF NEW RECYCLING MOTOR PUMP SETS FOR WASH WATER

Description Unit	Unit	Recurring
	Umt	Savings
Head for Raw water pumps	m	130
Quantity of water required to pump for recycling	mld	2
Required additional head due to the recycling	m	10
Head savings	m	120
Flow	m ³ /s	0.0231
Density of water	kg/m3	1000
Gravitational Constant	m/s ²	9.81
Hydraulic power	kW	29.52
Electrical power would have been incurred with 70% of the		
system	kW	42.17
Energy charge in Rs./kWh		5.75
Working hours/year		8760
kWh can be saved	kWh	369430
Energy charge would have been incurred (This will reflect		
in the power bill of Raw water pumping station)	Rs.	2124221
The density of recycled water	kg/m3	1250
Flow	m ³ /s	0.0231
Additional kWh required to operate recycling pump sets of		
30 HP having 65% efficiency	kWh	38255
The additional amount required to operate recycling pump		
sets per year (This will reflect in the power charge of WTP)	Rs.	219964
Investment required in Lakhs	Rs.	6.00

Net Savings in kWh per year	kWh	331175
Savings in Rs.per year	Rs	1904257
Simple Payback period	In years	0.32
	In	
	months	3.78

A1.5

	Do	U	Old	New
	Description Unit	nit	System	System
	Type of Motor	Induction		
	Class of Motor		Standard	IE2
	Motor power (rated)	Kw	220	210.00
	Efficiency (rated)	%	95.5	95.50
	Combinedsystemefficiencyofthesystem(measured)	%	58.69	
	Pump efficiency	%		78.00
	The combined efficiency of the system (rated)	%	70	74.49
	Head	m	38.7	38.70
	Flow	m ³ /s	0.411	0.41
	Density of water	kg/m3	1000	1000.00
T	Gravitational Constant	m/s ²	9.81	9.81
	Hydraulic Power, required to meet the demand by existing pump set	kW	156.03	156.03
	TotalElectricalPowerdrawntomeettherequirement	kW	265.86	209.47

Ð

Unit Cost for power	Rs./kWh	5.75	5.75
Annual operating Hours	Hours	8760	8760.00
Annual energy consumption	kWh /year	2328958.72	1834965.60
Annual power Savings, kWh	kWh		493993.12
Annual Savings	Rs. In Lakhs		28.40
Proposed load	Kw		210.00
Investment required in Lakhs	Rs, in lakhs		48.00
Simple Payback period	In years		1.69
	In months		20.28

A1.6

Energ	y Efficiency in Existing Pump	oing system by	replacing ineff	icient motor
No. 20	01) Description Unit	Uni t	Old System	New System
	Type of Motor	Induction		
	Class of Motor		Standard	IE2
	Motor power (rated)	Kw	220.00	210.00
	Efficiency (rated)	%	95.50	95.50
	Combined system efficiency of the system (measured)	%	63.93	
	Pump efficiency	%		78.00
	The combined efficiency of the system (rated)	%	70.00	74.49
	Head	m	38.70	38.70
Requirement	Flow	m ³ /s	0.41	0.41
	Density of water	kg/m3	1000.00	1000.00
kequ	Gravitational Constant	m/s ²	9.81	9.81

Hydraulic Power is required to meet the demand by existing pump set	kW	156.03	156.03
Total Electrical Power drawn to meet the requirement	kW	244.07	209.47
Unit Cost for power	Rs./kWh	5.75	5.75
Annual operating Hours	Hours	8760.00	8760.00
Annual energy consumption	kWh /year	2138066.44	1834965.60
Annual power Savings, kWh	kWh		303100.84
Annual Savings	Rs. In Lakhs		17.43
Proposed load	Kw		210.00
Investment required in Lakhs	Rs, in lakhs		48.00
Simple Payback period	In years		2.75
	In months		33.05

ANNEXURE.2. PRELIMINARY AUDIT NOTE

KERALA WATER AUTHORITY TEAM ENERGY MANAGEMENT UNIT Ref: KWA/JB/EW/EMC/EA/7813/2019 Dtd. 17/09/2021 CAMP OFFICE, PANAMKUTTYMALA. Mob. : 9447222494, e-mail ID: thampisujana@gmail.com

Date: 31/10/2021

PRIMARY AUDIT NOTE

It is requested that the following changes can be made in the mode of operation of WTP.

1) The water level in the sump has to be maintained at least 4 m during pumping if possible to get an average of 3.5 m.

2) The non-loaded transformer may be kept as a standby and the loading operation may be interchanged once in two or three months.

Team Leader S/d (Thampy S) Energy Audit Team