

CONSTRUCTION OF 5MLD STP AT KWA SITE AT ELAMKULAM IN KOCHI

DETAILED PROJECT REPORT

8/5288–1, Near Kuttyadi Irrigation Project Office, Moottoli, Kakkodi P.O., Calicut–673611 Mob: 9446048233, 0495–4025433

CONSTRUCTION OF 5MLD STP AT KWA SITE AT ELAMKULAM IN KOCHI

DETAILED PROJECT REPORT

VOLUME I REPORT

8/5288-I, Near Kuttiady Irrigation Project Office Moottoli, Kakkodi P.O., Calicut – 673611 Mob: 9446048233, 0495-4025433

EXECUTIVE SUMMARY

- In order to rejuvenate and transform urban India, the Ministry of Urban Development, Government of India has rolled out the flagship mission of Atal Mission for Rejuvenation and Urban Transformation (AMRUT). The purpose of AMRUT is to (i) ensure that every household has access to tap with assured supply of water and a sewerage connection; (ii) increase the amenity value of cities by developing greenery and well maintained open spaces (e.g. parks); and (iii) reduce pollution by switching to public transport or constructing facilities for non-motorized transport (e.g. walking and cycling).
- As per the L.O.A vide no. Dated 5/12/17, The Executive Engineer (Project Division) of Kerala Water Authority Kochi, M/s Ram Biologicals Kakkodi, Calicut has been hired as the Consultant for the preparation of Detailed Engineering Report for a new 5MLD Sewage Treatment Plant at KWA Elamkulam Site in Kochi under AMRUT project for 2015-16.
- 3. The scope of consultant under the proposed mission is the preparation of DPR for the proposed 5 MLD Sewage Treatment Plant based on MBBR Technology at KWA Site at Elamkulam in Kochi. The scope covers preparation of Conceptual Plan, Designing, and Estimation with inputs provided in LOA and further studies including stake holder's consultations. Accordingly the DPR is prepared in a phased manner based on the level of priority and needs.
- 4. Kochi surrounded by back water and the sea is experiencing high ground water condition. Kochi corporation comprising an area of 94.88 KM² with a population of 6,33,553 as per the 2011 Census is experiencing severe pollution due to frequently overflowing septic tanks and in-discriminate discharge of septage into the water bodies. Both the surface water and ground water are polluted. Two numbers of 100m³/day capacity septage plants have been installed already, one at Brahmapuram and other at the Cochin Port area near to Willington Island. In Kochi, only small locality near Kadavanthra and M G Road has been covered under an existing

sewerage scheme established long back with a 4.5MLD capacity STP at Elamkulam which is more or less disfunctional.

- 5. Commissioned in 1959, the existing Sewage Treatment Plant of 4.5MLD consists of two inlet chambers, flow measuring arrangements as preliminary treatment which is not properly functioning. After Grit Chamber there is Primary Clarifier followed by Aeration Tanks. Bio Solids treatment consists of Sludge Digestion followed by the Sludge Drying Beds. The Beds are dis-functional and no regular sludge collection and disposal arrangements exits now. No facility for dis infection exits at present. The partially treated water is directed from the open drain to the nearly Chettithara Canal.
- 6. The Operation and Maintenance of the STP is now under the control of a sewerage sub division. It was reported that there are 600 odd connections both domestic and commercial. Though there are lot of new applicants the same has not been sanctioned because of the capacity limitations and unsatisfactory functioning of the STP. Power is supplied through a transformer provided by KSEB in the premises exclusively for the STP. There is no Substation existing inside the compound, though the connection is treated as High Tension (200KVA Demand). Monthly power charges vary from Rs. 60000 to 70000/month.
- 7. The treatment scheme proposed is split into four distinct parts:
 - **Pre-treatment:** this comprises of mechanical, manual screening and grit removal tank. After pre-treatment the sewage shall be taken to biological treatment plant at uniform rate.
 - Secondary Treatment: comprising two MBBR reactors. The sludge from the secondary clarifier will be send to the sludge sump.
 - **Tertiary Treatment:** This phase consisting of filtration and disinfection processes. Excess sludge produced in biological treatment process shall be collected in sludge tank and digested aerobically. The excess sludge dewatered in centrifuge and finally disposed or used as organic manure. The tertiary treated water will be stored in a RCC Tank for 30minutes detention to facilitate the disinfection.
- 8. The treated water will have quality,

BOD < 10

TSS < 30 COD < 50

> The water can be consumed for reuse applications such as gardening, washing of roads; construction purposes etc. the sludge cakes can be used as manure. Unused treated water can be discharged in to nearby Chettithara canal.

- 9. The layout has been prepared in two ways, namely one for accommodating a 5MLD plant and the other for enhancing the capacity to 5MLD by addition of units in future; the pre-treatment alone is designed for 10MLD.
- The cost of DPR worth to Rs. 12,55,79,000/- (Twelve Crores Fifty Five Lakhs and Seventy Nine Rupees only). Annual O&M cost worth Rs. 47,05,000/- (Fourty Seven Lakhs Five Thousand Rupees only). Including 5 years O&M total cost will be Rs. 2,87,20,000/- (Two Crores Eighty Seven Lakhs Twenty Thousand Rupees Only). The DPR contains two volumes as suggested. Volume I contain Reports and Drawings and volume II contain Estimates Supported by PWD Observed Data/ Rate Analysis

TABLE OF CONTENTS

CONTENTS			
LIST	LIST OF TABLES		
LIST	OF FIGURES	V	
LIST	OF DRAWINGS	'n	
Chapt	ter 1 INTRODUCTION	1	
1.1	Background	1	
1.2	Project Setting and Rationale	1	
1.3	Need for Sewerage Scheme	1	
1.4	AMRUT Project	3	
1.5	General	3	
Chapt	ter 2 SCOPE OF WORK BY THE CONSULTANT	5	
2.1	General	5	
Chapt	ter 3 EXISTING 4.5MLD STP – QUICK CONDITIONS ASSESSMENT	6	
3.1	Existing Pumping Stations & Pumping Mains	6	
3.2	The Existing Sewage Treatment Plant	6	
3.3	Plant Working Details	7	
3.4	Photos of Existing Plant	9	
Cha	Chapter 4 WASTE WATER QUALITY- INFLUENT AND EFFLUENT 12		

4.1	TOR Requirement		
4.2	Visit by Consultants and Discussions		
4.3	Efflue	ent Water Quality Requirements	14
Cha	pter 5 A	ADMINISTRATIVE APPROVALS	16
5.1	Genera	al	16
Cha	pter 6 I	LOCATION SPECIFIC DETAILS	17
6.1	Locati	on Details of STP	17
6.2	Soil Pr	ofile	18
Chap	oter 7 T	ECHNOLOGY OPTION FOR STP	20
7.1	Unit (Dperations	20
7.2	Selecti	on of Technology for the Proposed STP	22
7.3	Movin	g Bed Bio Reactor (MBBR) Technology/Details	22
	7.3.1	Process Benefits	23
	7.3.2	Features of MBBR	23
	7.3.3	Advantages of MBBR	25
7.4	Treatr	nent Scheme	25
	7.4.1	Receiving Chamber	26
	7.4.2	Screen Channel	27
	7.4.3	Grit Separator	27
	7.4.4	Approach Channel for Parshall Flume	27
	7.4.5	Equalisation Tank	28

	7.4.6 Mixing Equipment	28
	7.4.7 Sewage Pump Pumping to MBBR	28
	7.4.8 Moving Bed Bio reactor (MBBR)	28
	7.4.9 Air Blowers	29
	7.4.10 Secondary Clarifier	29
	7.4.11 Sludge Sump	30
	7.4.12 Thickener Feed Pump	30
	7.4.13 Sludge Thickener	30
	7.4.14 Filter Press/ Centrifuge Feed Pump	30
	7.4.15 Sludge Centrifuge	30
	7.4.16 Treated Water Tank	31
	7.4.17 Pressure Sand Filter (PSF)	31
	7.4.18 Activated Carbon Filter (ACF)	32
	7.4.19 Chorine Contact Tank	33
	7.4.20 Effluent Channel	33
	7.4.21 Outfall	34
7.5	Power Requirement	34
7.6	Other Facilities	34
7.7	Plant Layout	34
Chapt	er 8 PROCESS FLOW AND DESIGN	36
8.1	Process Flow Diagram	36

Preparation of Der for Construction of 5mld STP at KWA Site at Elamkulam in 2018 Kochi 8.2 9.1 9.2 9.3 9.4 9.4.1 9.4.2

	9.4.3	Economic Development	61
	9.4.4	Environmental and other significant features	62
9.5	Potent	ial Environmental Impacts and Mitigation Measures	62
	9.5.1	Environmental Impacts during Construction Phase	62
	9.5.2	Environmental Impacts during Operation Phase	63
	9.5.3	Positive Impacts	63
	9.5.4	Mitigation Measures - Construction Phase	64
9.6	Enviro	onmental Monitoring Plan	66
9.7	Concl	usion	70

Chapter 10 SIZING OF THE EQUIPMENT	71
Chapter 11 TENTATIVE COSTING	76
Chapter 12 OPERATION & MAINTENANCE TENTATIVE COST	79
Chapter 11 CONCLUSION	81

LIST OF TABLES

Table No.	Title	Page No.
3.1	Daily Pumping Duration (Inflow)	
4.1	Influent Quality	
4.2	Influent Quality of Vital Parameters	
4.3	Effluent Water Quality Requirements	
4.4	Effluent Water Quality after Treatment Requirements	
7.1	Unit Operations	
7.2	Unit Operations and Processes	
8.1	Process Design of 5MLD Capacity STP for KWA, Kochi	
9.1	Environmental Monitoring Programme of Construction of STP in	l
	Elamkulam	67
10.1	Details of Various STP Units	
10.2	Load Requirement	
11.1	General Abstract	
12.1	Operation and Maintenance Estimate	

LIST OF FIGURES

Figure No.	Title	Page No.
3.1	Mechanical Screen	9
3.2	Manual Screen	9
3.3	Electrical Panel	9
3.4	Pump House	9
3.5	Primary Settling Tank	
3.6	Aeration Tank	
3.7	Final Settling Tank	
3.8	Sludge Storage Yard	
4.1	Consultant-KWA Joined Site Visit	
6.1	Area – Existing 4.5mld STP Compound At Elamkulam	
6.2	General Soil Horizons	
7.1	Features of MBBR	
7.2	Essential Components of MBBR	
7.3	MBBR Media	
7.4	Pressure Sand Filter	
7.5	Activated Carbon Filter	
8.1	Process Flow Diagram	

LIST OF DRAWINGS

CIVIL

Drawing 1	RAM-KWA-STP-C/001 -Existing STP Layout
Drawing 2	RAM-KWA-STP-C/002 –Over all Plant Layout
Drawing 3	RAM-KWA-STP-C/003 – General Arrangement of Proposed STP with Future Consideration
Drawing 4	RAM-KWA-STP-C/004 General Arrangement of Proposed STP Without Future Consideration
Drawings 5	RAM-KWA-STP-C/005 General Arrangement of Pile Layout
Drawing 6	RAM-KWA-STP-C/006/1 Columns &Beams Layout – Typical for Receiving Chamber, Screen Channel, Grit Chamber and Parshall Flume
Drawing 7	RAM-KWA-STP-C/006/2 General Arrangement of Receiving Chamber, Screen Channel & Grit Chamber
Drawing 8	RAM-KWA-STP-C/007 General Arrangement of Parshall Flume & Distribution Chamber
Drawing 9	RAM-KWA-STP-C/008 General Arrangement of Equalisation Tank
Drawing 10	RAM-KWA-STP-C/009 General Arrangement of MBBR Tank I
Drawing 11	RAM-KWA-STP-C/010 General Arrangement of MBBR Tank II
Drawing 12	RAM-KWA-STP-C/011 General Arrangement of Secondary Clarifier Tank
Drawing 13	RAM-KWA-STP-C/012 General Arrangement of Sludge Sump
Drawing 14	RAM-KWA-STP-C/013 General Arrangement of Sludge Thickener Pump
Drawing 15	RAM-KWA-STP-C/014 General Arrangement of Thickened Sludge

Drawing 16	RAM-KWA-STP-C/015 General Arrangement of Filter Feed Tank Sump
Drawing 17	RAM-KWA-STP-C/016 General Arrangement of Treated Water Tank
Drawing 18	RAM-KWA-STP-C/017 General Arrangement of Filters with Filter Foundation
Drawing 19	RAM-KWA-STP-C/018 General Arrangement of Effluent Water Channel
Drawing 20	RAM-KWA-STP-C/019 General Arrangement of Centrifuge Building
Drawing 21	RAM-KWA-STP-C/020 General Arrangement of Sludge Storage Yard
Drawing 22	RAM-KWA-STP-C/021 General Arrangement of Transformer Control Room & Laboratory Housing,
Drawing 23	RAM-KWA-STP-C/022 General Arrangement of Centrate Sump
Drawing 24	RAM-KWA-STP-C/023 General Arrangement of Internal Roads, Walk Ways and Storm Water Drains and Landscaping Layout
Drawing 25	RAM-KWA-STP-C/024 General Arrangement of Pump House – Typical
Drawing 26	RAM-KWA-STP-C/025 General Arrangement of Generator Foundation

STRUCTURAL

Drawing 6	RAM-KWA-STP-S/006 – Structural Detailing of Filter Feed Tank
Drawing 5	RAM-KWA-STP-S/005 - Structural Detailing of Sludge Thickener Tank
Drawing 4	RAM-KWA-STP-S/004 - Structural Detailing of Sludge Sump & Thickened Sludge Sump
Drawing 3	RAM-KWA-STP-S/003 - Structural Detailing of Secondary Clarifier
Drawing 2	RAM-KWA-STP-S/002 - Structural Detailing of MBBR Tank
Drawing 1	RAM-KWA-STP-S/001 - Structural Detailing of Equalisation Tank

Drawing 7	RAM-KWA-STP-S/007 - Structural Detailing of Treated Water Tank
Drawing 8	RAM-KWA-STP-S/008 - Structural Detailing of Centrate Sump
Drawing 9	RAM-KWA-STP-S/009 - Structural Detailing of Generator Foundation
Drawing 10	RAM-KWA-STP-S/010/1 - Structural Detailing of Internal Roads, Walk Ways and Storm Water Drains
Drawing 11	RAM-KWA-STP-S/010/2 – Structural Detailing of Internal Roads, Walk Ways and Storm Water Drains
Drawing 12	RAM-KWA-STP-S/011 - Structural Detailing of Roof Truss Sludge Storage Yard
	MECHANICAL
Drawing 1	RAM-KWA-STP-M/001- Hydraulic Diagram
Drawing 2	RAM-KWA-STP-M/002 – Extension 2Nos of DI 600 Pumping Mains Piping Layout
Drawing 3	RAM-KWA-STP-M/003 - General Piping Layout – Filters
Drawing 4	RAM-KWA-STP-M/004 - Process and Instrumentation Layout (P&I Layout)

ELECTRICAL

Drawing 1	RAM-KWA-STP-M/001-Single Line Diagram - Power Distribution
Drawing 2	RAM-KWA-STP-M/002-General arrangement of Star-Delta Connection- Typical
Drawing 3	RAM-KWA-STP-M/003-General arrangement of DOL Connection Typical

Chapter 1

INTRODUCTION

1.1Background

As per the Letter of Acceptance vide no. Dated 5/12/17, The Executive Engineer (Project Division) of Kerala Water Authority Kochi, M/s Ram Biologicals, Kakkodi, Calicut has been hired as the Consultant for the preparation of Detailed Engineering Report for a new 5MLD Sewage Treatment Plant at KWA Elamkulam Site in Kochi under AMRUT project for 2015-16.LOA is attached as **Annexure A**

1.2 Project Setting and Rationale

Kochi surrounded by back water and the sea is having high ground water condition. Kochi corporation comprising an area of 94.88 KM² with a population of 6,33,553as per the 2011 Census. City is experiencing severe pollution due to frequently overflowing septic tanks and in-discriminate discharge of septage into the water bodies. Both the surface water and ground water are polluted. Two numbers of 100m³/day capacity septage plants have been installed already, one at Brahmapuram and other at the Cochin Port area near to Willington Island. In Kochi, only small locality near Kadavanthra and M G Road has been covered under an existing sewerage scheme established long back with a 4.5MLD capacity STP at Elamkulam which is more or less dysfunctional presently. Now under AMRUT the long pending need for a modern STP is being materialized after establishing new STP, KWA can retrofit the old STP and upgrade the same to new standards.

1.3Need for Sewerage Scheme

The sewerage project in respect of which considerable public and social resources are being used, form a basic infrastructure for the country and an indisputable indicator of civilisation and development. The works cover a number of substantial social needs and aim to improve the quality of life and to protect public health and the environment. Some of the benefits and advantages of the sewerage system are as follows:

• Upgrading the quality of life

The operation of the sewerage system has relieved these areas to a great extent from previous problems that were caused by the continuous emptying of cesspools. The sewerage system provides a healthier and more appropriate way to manage liquid wastes.

• Preserving the natural environment

With the operation of the sewerage system no more pollution of ground water is effected and the discharge of sewage waste in surface water will be significantly reduced. Clogging of drains and weed menace of surface water will be reduced resulting in the rejuvenation of the canals and the back water system.

• Saving and processing waters

Water is a substantial natural resource for our country and it should be managed in the best possible manner. The tertiary treated effluent at the wastewater treatment plant is reused for agricultural and other purposes thus helping conservation of precious water resources.

• Standard of living

Enhanced quality of ground and surface water minimises water borne diseases. As a result of the above, the sewerage system contributes to further development and increase of the standard of living of the town of Limassol inhabitants. Considering all the above advantages, there is no doubt that if we all cooperate, we and our children will enjoy a better quality of life in the years to come and that we will secure a better environment to the forthcoming generations.

Though there were proposals under JNRUUM and ADB funded KSUDP for two separate sewerage projects, they didn't materialize. Under AMRUT itself a DPR has been prepared for the Decentralized type of sewerage system and STPs in wards 15, 16, 17 networks being designed as an interceptor sewerage system. The main drinking water supply of Kochi C.D.P area is from the 225MLD Water treatment plant at Alwaye and the 100MLD Water treatment plant at the Maradu. The source of former is the Periyar and the later from the Muvattupuzha River. The average per capita availability can be considered as 150lpcd. The sewerage projects aims to mitigate the existing environmental pollution and clean the contaminated canal and backwater system.

1.4 AMRUT Project

In order to rejuvenate and transform urban India, the Ministry of Urban Development, Government of India has rolled out the flagship mission of Atal Mission for Rejuvenation and Urban Transformation (AMRUT). The purpose of AMRUT is to:

- (i) Ensure that every household has access to tap with assured supply of water and a sewerage connection
- (ii) Increase the amenity value of cities by developing greenery and well maintained open spaces (e.g. parks)
- (iii) Reduce pollution by switching to public transport or constructing facilities for non-motorized transport (e.g. walking and cycling).

The Mission will focus on the following Thrust Areas:

- (i) Water Supply
- (ii) Sewerage facilities and septage management
- (iii) Storm Water drains to reduce flooding
- (iv) Pedestrian, non-motorized and public transport facilities, parking spaces
- Enhancing amenity value of cities by creating and upgrading green spaces, parks and recreation centers, especially for children.

1.5General

The objective of treatment of sewage through biological processes is to stabilize decomposable organic matter and remove other harmful contaminants prior to discharge onto a land or waterway or water body. The degree of treatment depends on the desired waste water quality.

5 MLD Sewage Treatment Plant based on MBBR Technology is proposed to treat the raw sewage collected from the existing network. The new STP is proposed as an alternative to the existing STP at Elamkulam, in the same premises. Necessary provision for collecting the raw sewage from the existing inlet point in the premises to the new plant is specified and the units of the new plants are designed so that it aids easy O&M and maximum space utilisation. The treatment of sewage can be stated under three stages. The primary treatment is the first stage of treatment where in all the physical matters are removed through screening, primary settling and through degritting. The secondary treatment removes all the biological matters through biological decomposition of degradable matters through MBBR Technology. The secondary treatment also comprises of sludge handling, management issues with disposal aspects. The tertiary Treatment process comprises of disinfection of treated sewage and its recycling proposals.

Chapter 2

SCOPE OF WORK BY THE CONSULTANT

2.1 General

The scope of consultant under the proposed mission is the preparation of DPR for the proposed 5 MLD Sewage Treatment Plant based on MBBR Technology at KWA Site at Elamkulam in Kochi. The scope covers preparation of Concept Plan, Designing, Estimation and we will approach the project on the basis of service level framework, and carry out required investigation. Accordingly the DPR is prepared in a phased manner based on the level of priority and needs. The DPR for sewage treatment plant at KWA Elamkulam Site in Kochi is presented here.

The Letter of Acceptance specifies the following scope of the consultants:

- 1. Extension of the two numbers of 600mm pumping main up to the entry point of new STP
- 2. Design of individual components of the new STP with MBBR as the technology
- 3. Preparation of layout drawing
- 4. Structural, mechanical and electrical design and detailing
- 5. Sizing and listing of all units and equipments
- 6. General Arrangement Drawing
- 7. Wiring Diagram
- 8. Foundation Design with given parameters of safe loads by the client
- 9. All Drawings
- 10. Detailed costing as per DSR 2016
- 11. Submission of Draft DPR
- 12. Submission of final DPR after correction

The DPR shall be in two volumes

Volume I: Reports and Drawings

Volume II: Estimates Supported by PWD Observed Data/ Rate Analysis

Chapter 3

EXISTING 4.5MLD STP – QUICK CONDITION ASSESSMENT

3.1 Existing Pumping Stations & Pumping Mains

There are two main pumping stations with the existing network one at Kadavanthra and the other at the Maharaja's college ground at MG Road. Both the pumping mains were reported to be of 600mm CI tyton pipes. Capacity of both the wet wells is 1300m³. Pump set capacity for the MG Road station is 30HP whereas the Kadavanthra Station is 75HP. it is assumed that the minor extension of the mains will not adversely change the pump duty conditions. The discharge and head of these pumping stations are given below:

M G Road P.H No. 1 : 30HP-38lps against head of 12m

Kadavanthara P.H No. 2: 75HP-225lps against a head of 14m

3.2 The Existing Sewage Treatment Plant

The existing STP was commissioned in 1959 and inaugurated by the then Honourable President of India Sri. Rajendra Prasad. The plant is designed with ASP as the technology. Preliminarily treatment is defective and tertiary treatment including chlorination is absent. Only secondary treatment is partly functional.

STP consists of 2 inlet chambers, flow measuring arrangements as preliminary treatment which is not properly functioning. After Grit Chamber there is Primary Clarifier followed by Aeration Tanks. Bio Solids treatment consists of Sludge Digestion followed by the Sludge Drying Beds. The Beds are dis-functional and no regular sludge collection and disposal arrangements exits now. No facility for dis infection exits at present. The partially treated water is discharged from the open drain to the nearby Chettithara Canal which is the receiving water body. The present project is proposed to cover the five divisions partially or fully.

•	Elamkulam	•	Division 54
---	-----------	---	-------------

- Kadavandra : Division 57
- Eranakulam South : Division 62
- Ghandi Nagar : Division 63
- Eranakulam Central : Division 66
- > Households and commercial establishments are already covered in the project.
- The STP covers a present population of 30000 and the treatment plant can be beneficial to a projected population of 41000 in future.

The functional operating staffs allowed to KWA for the STP is as follows,

Operator	:	2Nos
Assistant Operators	:	1Nos
Scavenger	:	1Nos
Fitter	:	1Nos
Plumber	:	1Nos
Waterman	:	1Nos
Sweeper	:	1Nos

3.3 Plant Working Details

The Operation and Maintenance of the STP is now under the control of a sewerage sub division. It was reported that there are 600 odd connections both domestic and commercial. Though there are lot of new applicants the same has not been sanctioned because of the capacity limitations and unsatisfactory functioning of the STP. Power is supplied through a transformer provided by KSEB in the premises exclusively for the STP. There is no Substation existing inside the compound, though the connection is treated as High Tension (200KVA Demand). Monthly power charges vary from Rs. 60000 to 70000/month.

At a time inflow is through one of the two pumping mains in a staggered fashion.

No 1 Pumping Station at MG Road				
6AM to 9:30AM	:	3.30 hrs		
11.00AM to 2.00 PM	:	3.00 hrs		
4:30PM to 10:30 PM	:	5.30 hrs		
Total	=	12.00hrs		
No 2 Pumping Station at Kadavanthra				
9:30AM to 11AM	:	2:00 hrs		
2:00PM to 4:30PM	:	2:30 hrs		
Total	=	4.30hrs		
Total Exiting Pumping Duration/day = 16:30 hrs				

At rated discharge of pump the inflow may be,

ie., =	5.28	6MLD		
		Total Inflow	=	5286.60m ³
From No. 2 PH	=	4.5×225×3600×10-3	=	3695.00m ³
From No. 1 PH	=	12×38×3600×10-3	=	1641.60m ³

2018

3.4 Photos of Existing Plant

Fig 3.1: Mechanical ScreenFig

3.2: Manual Screen

Fig 3.3: Electrical Panel

Fig 3.4: Pump House

Fig 3.5: Primary Settling Tank

Fig 3.6: Aeration Tank

Fig 3.7: Final Settling Tank

Fig 3.8: Sludge Storage Yard

2018

Chapter 4

WASTE WATER QUALITY-

INFLUENT AND EFFLUENT

4.1 TOR Requirement

As per LOA consultant is required to prepare detailed engineering report of 5MLD MBBR Type STP in the premises of the existing STP at Elamkulam with influent quality as mentioned below,

Parameter	Units	Values
BOD	mg/l	380
COD	mg/l	1000
рН	-	6.0 – 9
Oil & Grease	mg/l	150
NH3-N	mg/l	200

Table	4.1:	Influent	Qual	lity
			×	

4.2 Visit by Consultants and Discussions

The Consultants M/S RAM Biologicals visited the STP site and held discussions with the KWA and CMMU staffand collected the relevant data. During the visits it was visually clear that the influent quality is of weak to medium quality sewage. On perusal of the waste water influent quality reports maintained by KWA, the same was confirmed. The results of the tests conducted on 27/04/2016, 26/05/2016, 16/07/2016, 20/08/2016, 17/09/2016and 28/10/2016 revealed that influent quality of vital parameters are as show below,

Fig 4.1: Consultant-KWA Joined Site Visit

Parameter	Units	Maximum Value	Minimum Value
BOD	mg/l	113	101
рН	-	7.5	6.6
Oil & Grease	mg/l	7.5	7.2
Suspended Solids	mg/l	35	29

Table 4.2: Influent Quality of Vital Parameters

The test results are attached as Annexure B

On Further deliberation KWA also agreed of designing the STP with medium sewage quality as the influent.

4.3 Effluent Water Quality Requirements

Ministry of Environment Forest and Climate Change as per notification dated 13/11/2017 stipulates following effluent quality for the discharge into water bodies except for Metro Cities.

Parameter	Units	Values
BOD	mg/l	30
COD	mg/l	1000
рН	-	6.0 – 9
TSS		100
Fecal Colliform	mpn	<1000

 Table 4.3: Effluent Water Quality Requirements

The Notification is provided as **Annexure C**

Since more stringent Indian Standards are likely to be introduced in near future and reuse applications to be made mandatory, it was decided to provide the effluent quality after treatment as follows

Sl No.	Parameter	Limit	Unit
1	COD	100.00	mg/lt
2	BOD	< 10.00	mg/lt
3	TSS	30.00	mg/lt
4	Total Nitrogen (As N)	10.00	mg/lt
5	Total Phosphorous (As P)	< 2	mg/lt
6	рН	6 to 9	

0	\mathbf{n}	1	0
	()		х
_	υ	Т	O

7	E Colliform	1 x 10 ³	mpn/100ml
---	-------------	---------------------	-----------

The KWA Officers requested to include provision for an office building with a meeting/classroom. Nursing students periodically visit the STP and attend classes conducted by KWA Staff as part of their Curriculum. But during presentation in front of the high level committee for AMRUT under the chairmanship of the Additional Principal Secretary LSGD, the decision was not to provide an office building with a meeting/classroom.

Chapter 5

ADMINISTRATIVE APPROVALS

5.1 General

Draft proposal with estimates were presented in front of the high level committee for AMRUT under the chairmanship of the Additional Principal Secretary LSGD. During deliberation the committee suggested following deviations in to proposals / RC estimates.

- a. To delete provision for office building
- b. To provide O&M estimate for 5 years as suggested as against 10 years as estimated below

Accordingly approval was issued for a STP sum of 1370 lakhs for the Elamkulam STP under KWA and the consultants were directed to prepare detailed estimates and DPR accordingly.

Chapter 6

LOCATION SPECIFIC DETAILS

6.1 Location Details of STP

The site is located at Elamkulam near to the SahodaranAyyappan (SA Road) and it is approximately 150m away from SA road through Fathima church road. The location is blundered by Chettithara canal on its either sides. The extent of land available is 2.5 acres.

Fig 6.1: Area – Existing 4.5mld STP Compound AtElamkulam

The site is bounded by

West	:	Fathima Church Road
North	:	Subash Chandra Bose Road
East	:	Chettithara Canal
South	:	Chettithara Canal

There are residential houses close to both the above mentioned roads. Even though the STP Units are only partially functional, there is no odor or vector nuisance observed. There are no local complaints also. It was confirmed that site is safely above the High Tide level (HTL) and there is no history of backflow through the outfall channel. The proposed site is covered with thick bushes all over along with trees fit for fire wood. A part of this is needed to be cut and remove. Compensatory afforestation within the premises can be done which will function as a green belt for the STP.

6.2 Soil Profile

The soil profile is one of the most important concepts in soil science. It is a key to understanding the processes that have taken in soil development and is the means of determining the types of soil that occur and is the basis for their classification. The soil profile is defined as a vertical section of the soil from the ground surface downwards to where the soil meets the underlying rock. The soil profile can be as little as 10 cm thick in immature soils and as deep as several metres in tropical areas where the climate is conducive to rapid alteration of the underlying rock to form soil. In temperate areas, the soil profile is often around a metre deep and in arid areas somewhat shallower than this.

Fig 6.2: General Soil Horizons

The purposes of the Geo-Technical Investigation are as following:

- a. To perform the required field investigation including soil boring with related field tests within the bore hole, collecting samples.
- b. To determine the type, extend to the sub-surface material up to 30m depth.

Soil at 3m depth is sand (white) with N-Value 24. From 13.5m to 39.3m N-Values range from 3 to 9. Soil at depth of 56m is clayey sand (Black) with N-Value >50. The geotechnical recommendation provided by the client is pile foundation assuming a safe load of 85T and 65T for pipes of diameter 750mm and 600mm respectively at 50 to 55m depth.

Chapter 7

TECHNOLOGY OPTION FOR STP

7.1 Unit Operations

The unit operations involving wastewater treatment are classified generally given as below,

SI No.	UNIT	FUNCTION	UNIT OPERATIOS /PHASES	
1	Primary	• Removal of rags, floating matter, grit, oil and grease etc.	ScreeningGrit removalOil and grease trap	
2	Secondary	 Removal of Bio degradable organic matter and suspended solids Also include nutrient removal (Nitrate and Phosphate) in advanced technologies 	 Aerobic suspended growth (Aerobic and anaerobic)Lagoon Chemical oxidation process Nitrate and phosphate removal Chemical oxidation Suspended growth Nitrification/De-nitrification Air stripping Ion exchange Chemical treatment Biological nutrient removal system 	
3	Tertiary	• Polishing the effluent for reuse application	 <u>Pathogen removal</u> Chlorine compounds O₃,UV Radiation Membrane filtration Filtration variation Carbon Adsorption Iron exchange 	

Table 7.1: Unit Operations

2018

The unit operations and process can be further classified as below

Si No.	Unit Operation	Functions	Treatment Devices
1	Screening, coarse	Removal of coarse solids such as sticks, rags and other debris in untreated waste water by interception(surface straining)	Bar rack
2	Screening fine	Removal of small particles	Fine screen
3	Screening micro	Removal of fine solids floatable matter and algae	Micro screen
4	Comminution	In stream grinding of coarse solids to reduce size	Comminutor
5	Grinding/ maceration	Grinding of solids removed by bar racks. Side stream grinding of coarse solids	Screenings grinder Macerator
6	Flow equalization	Temporary storage of flow to equalize flow rates and mass loadings of BOD and suspended solids	Equalization tank
7	Mixing	Blending chemicals with waste water and for homogenizing and maintaining solids in suspension	Rapid mixer
8	Flocculation	Promoting the aggregation of small particles into larger particles to enhance their removal by gravity sedimentation	Flocculator
9	Accelerated	Removal of grit	Grit chamber
	sedimentation	Removal of grit and coarse solids	Vortex separator
10	Sedimentation	Removal of settle able solids Thickening of solids and bio solids	Primary clarifier High – rate clarifier Gravity thickener
11	Floatation	Removal of finely divided Suspended solids and particles with densities' close to that of water also thickens bio- solids	Dissolved air floatation(DAF)
		Removal of oil and grease	Induced air floatation
12	Aeration	Addition of oxygen to biological process Post aeration of treated effluent	Diffused aerator, mechanical aerator, cascade aerator
----	------------------	---	--
13	VOC control	Removal of volatile and semi volatile organic compounds from waste waters	Gas stripper Defused air and mechanical aeration
14	Depth filtration	Removal of suspended solids	Depth filters

7.2 Selection of Technology for the Proposed STP

The Client has specified MBBR as the secondary treatment option due to following reasons.

- 1. MBBR has been in existence sufficiently for a long time, also in India and is a proven technology.
- 2. Minimum footprint
- 3. Better Stabilized sludge
- 4. Better Effluent Quality
- 5. Less sophisticated
- 6. Spare parts available
- 7. Lower life cycle cost
- 8. Nil odour nuisance and other environmental hazards

7.3Moving Bed Bio Reactor (MBBR) Technology/Details

MBBR technology employs thousands of polyethylene biofilm carriers operating in mixed motion within an aerated wastewater treatment basin. Each individual biocarrier increases productivity through providing protected surface area to support the growth of heterotrophic and autotrophic bacteria within its cells. It is this high-density population of bacteria that achieves high-rate biodegradation within the system, while also offering process reliability and ease of operation.

This technology provides cost-effective treatment with minimal maintenance since MBBR processes self-maintain an optimum level of productive biofilm.

Additionally, the biofilm attached to the mobile biocarriers within the system automatically responds to load fluctuations.

7.3.1 Process Benefits

- **Compact Design:** A fraction of the size of conventional systems
- **Expandable:** Capacity can be easily upgraded by simply increasing the fill fraction of biofilm carriers
- Single Pass Process: No return activated sludge stream required
- Load Responsive: Actively sloughed biofilm automatically responds to load fluctuations
- Minimal Maintenance: No F/M ratios or MLSS levels to maintain

MBBR processes are an excellent solution for common wastewater applications including:

- BOD Reduction
- Nitrification
- Total Nitrogen Removal

Moving Bed Biofilm Reactor systems deliver a flexible, cost-effective, and easyto-operate means to address current wastewater requirements and the expandability to meet future loads or more stringent discharge requirements within a compact design.

7.3.2 Features of MBBR

In Fluidized aerobic process a non-clogging biofilm reactor with special grade plastic media having density close to that of water is used. This plastic media has more surface area and biofilm grows on these media which move along with the water in the reactor. This movement within the reactor is generated by providing aeration with the help of diffusers placed at the bottom of aerobic reactor. The thin biofilm on the elements enables the bacteria to act upon the biodegradable matter in sewage and reduce BOD / COD content in the presence of oxygen present in air. Area requirement for this process is 1/10 of space required for conventional sewage treatment plant. Power requirements

are low as recycling of sludge is not done in this method as required in ASP. This can take shock loads and can with sand variation. Expected COD/BOD removal is more than 95%.

Fig7.1: Features of MBBR

Fig7.2: Essential Components of MBBR

7.3.3 Advantages of MBBR

- Sensitivity to small power downs is low.
- Sludge re circulation not needed and the system is self-sustaining.
- Very small area around 1/10th of conventional system is required.
- Higher degree of treatment.
- High degree of coli forms removal.
- Less chlorine dosing required.

7.4Treatment Scheme

The treatment scheme offered is Biological Treatment using MBBR Process. Excess aerobic biological sludge generated will be aerobically digested in a Sludge Holding Tank and dewatered in a filter press and then shall be used for land fill or can be used as manure for agricultural purposes. Sludge drying beds are also provided for dewatering the sludge. The treatment scheme proposed is split into three distinct parts viz.

• **Primary Treatment:** Floating matter removal is achieved by the fine and coarse screens. Grits shall be removed in the Grit Chamber. Sand and other particles of specific gravity > 2.65 are settled in the Grit Chamber. Screenings and Grit are periodically removed, dried and disposed. Parshall flume facilitates flow measurement. An Equalization Tank of 3hr of Hydraulic retention is provided to take care of the peak loads. Intermittent aeration facilitates nutrient removal(Nitrification & De-Nitrification).

• Secondary Treatment: It comprises of two MBBR tanks and settling tank.With submersible pumps, the sewage is pumped to the 1st MBBR tanks where the biological treatment occurs. The microorganism attached to the moving biofilm which sets in motion by aeration eats up the biomass as described earlier. For complete BOD/COD removal the process is repeated in a second MBBR connected in series to the former. Nutrient removal also takes place here. The Clarified supernatant liquid is led by gravity to the secondary clarifier for the solid – liquid separation.

The biologically treated sewage enters the clarifier at through a central shaft and it is then distributed equally. The suspended solids settles down and is mechanically scraped and removed. The sludge which settles at the bottom of the Clarifier is collected in the Sludge Sump.

After MBBR, treated water is stored in a RCC Tank. This tank will act as a feed tank for the tertiary treatment in Pressure Sand Filter (PSF) & Activated Carbon Filter (ACF). I nos of centrifugal pump will feed the PSF & ACF in building up adequate pressure into filters. Backwash water will be fed into the centrate sump for recirculation.

• **Tertiary Treatment:** Wastewater from secondary clarifier is filtered using pressure sand filter and activated carbon filter. Treated water is then disinfected by chlorination.

7.4.1 Receiving Chamber

The existing inlet point in the plant premises is connected to the collection tank designed for the new plant through gravitational flow. Both black water from WCs and grey water from bath room, toilets etc. shall be directly fed in to the collection tank. The average quantity of flow in to the receiving chamber is assumed to be 208.33cum/hr whereas peak flow is taken as 520.83cum/hr. Dimension of receiving chamber is $2.5 \times 1.5 \times 2m$ with a free board of 0.5m.

7.4.2 Screen Channel

After receiving chamber, sewage passes through screening chambers provided. The principal role of the fine screening is to remove floating materials from the sewage that could damage subsequent process equipment, eliminate materials that may inhibit the beneficial reuse of bio solids and reduce overall treatment process effectiveness. Screened materials are mechanically removed by the scrappers. In case of emergency, the screen chamber can be bye passed to the manual screen chamber so that the treatment is continuously ensured.

A mechanical coarse screen in SS (grade: 316) with bar thickness of 10mm, 20 mm clear bar spacing between bars, 38cm width of opening and sized as $4 \ge 0.45 \ge 0.4m$ and a mechanical fine screen in SS (grade: 316) with bar thickness of 10mm, 6 mm clear bar spacing between bars, 38cm width of opening and sized as $4 \ge 0.45 \ge 0.4m$ are provide. Approximate removal rate of BOD and TSS in the fine screen is in the range of 5- 10% and 5-30% respectively. Manually cleaned course screen are used in case of emergency by by-passing. The collected material of screening is sent to landfill area for safe disposal.

7.4.3 Grit Separator

The grit chamber is used to remove grit, consisting of sand, gravel, cinder, or other heavy solids materials that have specific gravity much higher than those of theorganic solids in wastewater. Grit chambers are provided to protect moving mechanical equipment from abrasion and abnormal wear; avoid deposition in pipelines, channels, and conduits; and to reduce frequency of digester cleaning. Two numbers of grit chambers are provided in the plant (1W+1SB) with a dimension of 3.65 x3.65 x0.7m.

7.4.4 Approach Channel for Parshall Flume

A Parshall flume is a fixed, hydraulic structure that is placed in a flow stream to determine the flow of water. The flume accelerates flow by both a contraction of the parallel sidewalls and a drop in the floor elevation in the throat. It is used to measure volumetric flow rate in industrial discharges, municipal sewer lines, and influent/effluent flows in wastewater treatment plants. A throat width of 38cm and a mouth width of 83cm

are provided from the table. The total approach channel length is given as 3m width a channel width of 83cm. The approach channel for parshall flume is designed to have a dimension of 0.38x0.83x3m.

7.4.5 Equalisation Tank

Flow equalization is used to minimize the variability of water and wastewater flow rates and composition. Each unit operation in a treatment train is designed for specific wastewater characteristics. Improved efficiency and control are possible when all unit operations are carried out at uniform flow conditions. The equalization tanks are provided (i) to balance fluctuating flows or concentrations, (ii) to assist selfneutralization, or (iii) to even out the effect of a periodic "slug" discharge from a batch process. The design is done to have a hydraulic retention time of 3 hours. A circular tank with diameter 14.5m is proposed with a depth of 4m.

7.4.6 Mixing Equipment

Mixers are often employed in equalization basins to achieve homogeneity in and to aerate the wastewater. Various types of mixers are available. The classification of mixers depends on the flow pattern the mixers produce. A mixer having capacity 396.1cum/hr is provided to ensure efficient mixing.

7.4.7 Sewage Pump Pumping to MBBR

Horizontal Centrifugal, level controlled, submersible, detachable non clog submersible pump sets (2W+1SB) shall be used to lift sewage to the MBBR chamber of the STP from Equalization Tank. The specification for the pumps shall be non-clog, solids handling (NC-SH) pumps of 23HP with a discharge of 312.50cu/hr with open impellers.

7.4.8 Moving Bed Bio reactor (MBBR)

Moving Bed Biofilm Bioreactor (MBBR) process uses the whole tank volume for biomass growth. It uses simple floating media, which are carriers for attached growth of biofilms. Biofilm carrier movement is caused by the agitation of air bubbles. This compact treatment system is effective in removal of BOD as well as nitrogen and phosphorus while facilitating effective solids separation.Design of the reactor is based on the actual wastewater characteristics and local conditions. MBBR units are placed in series based on the load entering each reactor. Neutralised and settled wastewater passes through MBBR for reduction in BOD/COD.

The standard filling of carrier is below 70% with a maximum specific area not more than $465m^2/m^3$. The design is done to have a volume of media about 40% and specific surface area preferably $450m^2/m^3$ Smaller carriers need smaller reactor volume at a given loading rate (as g/m²d) when the carrier filling is same. A circular MBBR tank is designed with diameter 9m with a depth of 4m.

7.4.9 Air Blowers

Aeration is the most critical component of a treatment system using the Moving Bed Bio Reactor. A well designed aeration system has a direct impact on the level of sewage treatment it achieves. An ample and evenly distributed oxygen supply in an aeration system is the key to rapid, economically-viable, and effective wastewater treatment. Two numbers (1W+1S) of air blowers of 50KW with a discharge of 1800cum/hr are provided.

7.4.10 Secondary Clarifier

Clarifiers are settling tanks built with mechanical means for continuous removal of solids being deposited by sedimentation. A clarifier is generally used to remove solid particulates or suspended solids from liquid for clarification and (or) thickening. Secondary Clarifier is a circular basin in which effluent from the activated sludge process is held for a period of time during which the heavier biomass (microorganisms) settle to the bottom as "activated sludge". There is no need for sludge recirculation in MBBR due to its high MLSS values. So secondary settling tanks are just used for removing excess settleable solids present in the effluent comes out from MBBR tanks. One number of secondary clarifier with 14m diameter and 3.5m depth is provided with a retention period of 2.5hrs.

7.4.11 Sludge Sump

Total sludge generated in the secondary clarifier is calculated as 1037.5kg/day. Sludge sump is designed to have a hydraulic retention time of 2hrs. One number of sludge sump having circular shape with diameter 2.5m and depth 2m is provided.

7.4.12 Thickener Feed Pump

The major function of sludge thickener feed pump is to transfer the sludge from sludge sump to sludge thickener. Two numbers (1W+1SB) of non-clog, submersible pumps are provided with a discharge of 10.5cum/hr.

7.4.13 Sludge Thickener

Sludge thickening normally refers to the process of reducing the free water content of sludge or Thickening is a procedure used to increase the solids content of sludge by removing a portion of the liquid fraction. Total sludge generated is calculated as 1037.5kg/day with a solid holding rate of 40.00kg/sqm/day. The thickened sludge will be having a consistency of 3% of total sludge. One number of sludge thickeners (Gravity Type) with 6.2m diameter and 3m depth is provided. Thickened sludge is collected in a sludge sump for feeding the dewatering equipment.

7.4.14 Filter Press/ Centrifuge Feed Pump

A filter press is a piece of batch operation, fixed volume equipment that separates liquids and solids using pressure filtration OR filter press is a piece of batch operation, fixed volume equipment that separates liquids and solids using pressure filtration. Slurry is pumped into the filter press and dewatered under pressure. Two numbers (1W+1SB) of screw pumps of 1.0HP with a discharge of 4.0cum/hr.

7.4.15 Sludge Centrifuge

Centrifugal thickening and dewatering of sewage sludge is a high speed process that uses the force from rapid rotation of a cylindrical bowl to separate wastewater solids from liquid. The centrifugal force in the decanters is utilized to separate the solids from the water. The use of organic flocculants, the polyelectrolytes, made it possible to coagulate the fines sludge particles to relatively large sludge floc in the centrifugal field so that reliable separation of solids and water could take place. Two numbers of centrifuges (1W+1SB) are provided with a capacity of 0.84cum/hr. A dosing tank is provided for Poly Electrolyte dosing in centrifuge and thickener. Poly Electrolyte dosing is fixed as 2.0kg/1000kg for a sludge generation rate of 1037.5kg/day. Therefore a dosing tank is designed with dimensions 0.75x0.75x1.5m.

7.4.16Treated Water Tank

The treated water is finally fed in to the treated water tank having a capacity of 108m³.Treated water from Activated Carbon filter is pumped in to the treated water tank of dimension 6x6x3m. Hydraulic retention time of 60 minutes is given in the treated water tank.

7.4.17 Pressure Sand Filter (PSF)

The treated water which is collected in the filter feed tank shall be pumped into the Pressure Sand Filter using the Filter Feed Pumps. They are the most popular method for removal of turbidity from water. The Pressure Sand Filter consists of a multiple layer of sand with a variety in size and specific gravity. These Filters are designed to remove turbidity and suspended particles present in the feed water with minimum pressure drop. Raw water flows down wards through the filter bed and as the suspended matter, which is treated by addition of a coagulant like alum or poly electrolyte, is retained on the sand surface and between the sand grains immediately below the surface. There is steady rise in the loss of head over a period of time and the flow reduces once the pressure drop across the filter is excessive. The filter is then taken out of service and cleaning of the filter media is effected by flow reversal also called as backwash. To assist in cleaning the bed, the backwash operation is sometimes preceded by air scouring by way of agitation through the under drain system. The air scouring agitates the sand with a scrubbing action, which loosens the intercepted particles.

Fig7.4: Pressure Sand Filter

Pressure sand filter is designed to have a dimension of 3mØ and 2.5m height. The work pressure is 3.5bar and it can be increased up to a maximum of 5.25bar. Materials used in pressure sand filter are sand and anthracite (Dual media).

7.4.18 Activated Carbon Filter (ACF)

Filtered wastewater from Pressure sand filter is then passed through the Activated Carbon Filter. They are generally employed in the process of removing organic compounds and/or extracting free chlorine from water, thereby making the water suitable for discharge.

Activated carbon is commonly used for removing organic constituents and residual disinfectants in water supplies. This not only improves taste and minimizes health hazards; it protects other water treatment units such as reverse osmosis membranes and ion exchange resins from possible damage due to oxidation or organic fouling. Activated carbon is a favoured water treatment technique because of its multifunctional nature and the fact that it adds nothing detrimental to the treated water. Most activated carbons are made from raw materials such as nutshells, wood, coal and petroleum.

Carbon filtering is a method of filtering that uses a bed of activated carbon to remove contaminants and impurities, using chemical adsorption. Each particle/granuleof carbon provides a large surface area/pore structure, allowing contaminants the maximum possible exposure to the active sites within the filter media.

The dimension of Activated Carbon Filter is 3mØx2.5m height. Materials used in ACF are Activated carbon preferably of coconut shell with surface area $850m^2/gm$ and mean particle diameter of 2mm with iodine value not less than 600 (Preferably 900).

Fig 7.5: Activated Carbon Filter

7.4.19Chorine Contact Tank

Chlorination is by far the most common method of wastewater disinfection and is used worldwide for the disinfection of pathogens before discharge into receiving streams, rivers or oceans. Chlorine is known to be effective in destroying a variety of bacteria, viruses and protozoa, including Salmonella, Shigella and Vibrio cholera. Disinfection is achieved at this facility through chlorination using chlorine gas. The purpose of the Chlorine Contact Tanks is to allow sufficient time for the chlorine to disinfect the water. A chlorine contact tank is designed having dimensions 6x6x3m and a retention time of 30 minutes. Gas chlorinator having capacity 0.42kg/hr with two numbers (1W=1SB) of vaccum feed type dosing pumps are provided for proper functioning.

7.4.20Effluent Channel

Effluent Conveyance System called as Effluent Channel is provided to carry treated effluent from STP to the Chettichira canal. Channel depth and width are 1m and 0.6m respectively.

7.4.21 Outfall

The disinfected clear effluent shall be let out to the Chettithara Canal through a RCC covered channel of adequate slope. Since the site is elevated above the High Tide level, there is no threat of back flow

7.5 Power Requirement

The total running power requirement is 163HP/136KW and the installed capacity is 350HP/260KW. The single largest motor capacity is 67HP (Air blower). An Indoor type transformer and a Generator is proposed with the following capacities.

a.	Transformer	:	250KVA

b. Generator : 250KVA

7.6 Other Facilities

Following provisions are also included in the proposal

- 1. Comfort room cum office in the laboratory
- 2. Internal Roads
- 3. Storm Water Drain
- 4. Providing Lawns
- 5. Planting trees
- 6. Bye-passing Arrangements
- 7. Walkways for all major elevated units
- 8. Walkways/ground pavements
- 9. Water Supply and sanitation arrangements
- 10. Laboratory

7.7 Plant Layout

The new 5MLD plant is proposed to be constructed towards the eastern side of the existing plant. Layout can be either of a single plant in a more compact manner or can be done leaving space for identical units for construction in future more or less in a modular fashion. Though this there will be slightly increase cost of piling/cabling etc. the same will facilitate construction of new plant of equal or lesser capacity. The O&M of which will be easierand less costly. New components are planned away from the proposed unit. Future it will maximise land usage. Both the layouts have been prepared for comparison. Costing done will suit the later.

Chapter 8

PROCESS FLOW AND DESIGN

8.1 Process Flow Diagram

8.2 Process Design

		MBBR PROCE	SS	
	Capacity: Average	Flow	5MI	LD
Sl No	Description of Parameter	Value	Unit	Reference/ Remarks
a.	Quantity of Sewage Generated	5000000.00	LPD	
		5000.00	Cum/day	
		208.33	Cum/hr	
b.	Population Equivalent	41667		
c.	Assumed Peak Factor	2.50		
d.	Peak Design Flow	520.83	Cum/hr	
		0.145	Cum/sec	
	RAW SEV	VAGE CHARA	CTERISTICS	
a.	Average Sewage flow entering the treatment plant	208.33	Cum/hr	
b.	Peak Sewage flow entering the treatment plant	520.83	Cum/hr	
c.	COD	500.00	mg/Lt	
d.	BOD	250.00	mg/Lt	
e.	TSS	400.00	mg/Lt	
f.	Total Nitrogen (As N)	40.00	mg/Lt	
g.	Total Phosphorous (As P)	7.00	mg/Lt	
h.	FecalColliform	3 x 10 ⁷	mpn/100ml	
i.	E Colliform	4 x 10 ⁷	mpn/100ml	
j.	Chlorides as Cl	170.00	mg/Lt	
k.	рН	6 to 9		

 Table 8.1:Process Design of 5MLD Capacity STP for KWA, Kochi

	TREATED SEWAGE CHARACTERISTICS (AFTER FILTRATION)						
a	COD	100.00	mg/Lt				
b	BOD	10.00	mg/Lt				
c	TSS	30.00	mg/Lt				
d	Total Nitrogen (As N)	10.00	mg/Lt				
e	Total Phosphorous (As P)	< 2	mg/Lt				
f	рН	6 to 9					
g	E Colliform	1 x 10 ³	mpn/100ml				
			l				
1		RECEIVING CH	AMBER				
	Quantity of Flow (Ave)	208.33	Cum/hr				
	Peak Flow	520.83	Cum/hr				
		0.145	Cum/Sec				
	Average Retention Time for the Peak Flow	45.00	sec				
	Volume of the Inlet Chamber	6.51	Cum				
	Assumed Depth of flow	2.00	m				
	Area Required for Inlet Chamber	3.26	Sq.m				
	Length of the tank	2.50	m				
	Breadth of the tank	1.30	m				
	Say	1.50	m				
Provide the Dimensions of Receiving Chamber as							
2.5 m x 1.5 m x 2 m SWD + 0.5 m Freeboard							
2	MECHAN	ICAL COARSE S	CREEN CHANNI	EL			
	Peak Design Flow	0.145	Cum/s				
	No. of screen	1.00	Nos. (Working)				

	Peak Flow rate per	0.145	m ³ /sec	
	screen			
	Velocity at Peak flow	0.950	m/sec.	Assumed Peak
	-			Velocity
	Area required for screen	0.15	m ²	
	Assuming depth of flow	0.40	meter	
	Width of opening	0.38	meter	
	Say	0.41	m	
	Clear Bar Spacing	20	mm	-
	Bar Thickness	10.00	mm	-
	No of Opening	14	Nos	
	Inside width of screen	0.41	m	
	Provide chamber width	0.45	m	
	Velocity	1.15	m/sec.	
	Full height of the Channel	1.00	m	
	Angle of inclination	70.00	degree	-
	Actual Velocity at Peak	0.72		> 0.6m/s ,
	flow	0.73	m/sec.	Hence OK
	Length of channel	2.10		
	required D/s	2.10	m	
	Say	2.50	m	
	Length of channel U/s	1.50	m	
	Total Length of channel	4.00	m	
Pr	ovide the Dimensions of N	lechanical Coarse	Screen Channel as	4 m x 0.45 m x
	0.4	m SWD + 0.6 m F	reeboard	
3	MECHA	NICAL FINE SC	REEN CHANNEL	
	Peak Design Flow	0.145	Cum/s	
	No. of screen	1.00	Nos. (Working)	
	Peak Flow rate per	0.145	m ³ /sec	
	screen			

-

	Valagity at Deals flaws	0.050		Assumed Peak
	velocity at Peak now	0.930	m/sec.	Velocity
	Area required for screen	0.15	m ²	
	Assuming depth of flow	0.40	meter	
	Width of opening	0.38	meter	
	Say	0.41	meter	
	Clear Bar Spacing	6	mm	
	Bar Thickness	10.00	mm	
	No of Opening	26	Nos	
	Inside width of screen	0.41	m	
	Provide chamber width	0.45	m	
	Velocity	2.04	m/sec.	
	Full height of the Channel	1.00	m	
	Angle of inclination	70.00	degree	
	Actual Velocity at Peak flow	1.29	m/sec.	
	Length of channel required D/s	2.10	m	
	Say	2.50	m	
	Length of channel U/s	1.50	m	
	Total Length of channel	4.00	m	
Pro	vide the Dimensions of Me	echanical Fine Scre	en Channel as 4m	x 0.45m x 0.4 m
	5	SWD + 0.6 m Freeb	ooard	
	1			
4	MANUAL (COARSE SCREEN	CHANNEL-Stan	dby
	Peak Design Flow	0.145	Cum/s	
	No. of screen	1.00	Nos. (Working)	
	Peak Flow rate per screen	0.145	m ³ /sec	
	Velocity at Peak flow	0.950	m/sec.	Assumed Peak Velocity

	Area required for screen	0.15	m ²	
	Assuming depth of flow	0.40	meter	
	Width of opening	0.38	meter	
	Say	0.41	m	
	Clear Bar Spacing	20	mm	
	Bar Thickness	10.00	mm	
	No of Opening	14.00	Nos	
	Inside width of screen	0.41	m	
	Provide chamber width	0.45	m	
	Velocity	1.15	m/sec.	
	Full height of the	1.00	m	
	Channel	1.00	111	
	Angle of inclination	45.00	degree	
	Velocity at Peak flow	0.60	m/sec	> 0.6m/s ,
	veroency at reak now	0.00	11/ 500.	Hence OK
	Length of channel	1 90	m	
	required D/s	1.90	111	
	Say	2.20	m	
	Length of channel U/s	1.50	m	
	Total Length of channel	3.70	m	
Pro	vide the Dimensions of M	anual Coarse Scree	en Channel as 3.7	m x 0.41 m x 0.4
	m	SWD + 0.6 m Free	eboard	
Dail	v Screening Ouantity			
	Daily Sewage Quantity	5000	m ³ /day	
	Bate of Screening	5000	iii /uay	
	Quantity	0.015	m ³ /1000m ³	
	Quality Daily Screening			
	Quantity	0.075	m³/day	
	Quantity			
5		GRIT SEPERA	ATOR	

No. of Grit Units	2		(1W+1SB)
Peak Flow	0.145	Cum/s	
Flow in Each Unit	0.145	Cum/s	
Computation of Settling			
Velocity: Stoke's Law			
Grit Particle Size	0.150	mm	
Specific Gravity of	2.65		
Particle	2.05		
Hydraulic Retention Time	60.00	Sec	
Volume of the Grit Chamber	8.68	m ³	
Surface Overflow Rate	959	cum/sqm/d	Assumed
(SOK)	0.011		
	0.011	cum/sqm/sec	
Area	13.03	m²	
SWD	0.70	m	
Proposimg a Square	3 61		
Channel of Size			
Length of Grit Seperator	3.65	m	
Width of Grit Seperator	3.65	m	
Critical Displacement		$[8k/f(S_{s}, 1)] d^{1} $	
Velocity (Vc)		[0K/1(35-1)gd] 0.3	
Where,			
K	0.040		
f	0.03		
Ss	2.65		
d	0.00015	m	
Vc	0.097	m/sec	
Horizontal velocity of flow	v Vh should be kep	ot less than the critic	al displacement
velocity Vc			
SWD	0.70	m	
			1

	Vh	0.06	m/sec		<vc ,="" hence<="" th=""></vc>	
	V II		0.00	111/ 500		Safe
HRT at Peak Flor	HPT at Peak Flow		61 16	Sec		> 60, Hence
	TIKT at Leak Flow		04.40	Bet		Safe
Pro	ovide the Dimension of Gri	parator as 3.65	5 m x 3.65 m x	0.7	m SWD + 0.5 m	
			Freeboard			
	1					
6	APPROACH	I CH	ANNEL FOR	PARSHALL	PLU	JME
					Siz	ing done as per
	Lower value of flow in M	LD	1	MLD	CP	HEEO Manual
					Ap	pendix A - 5-9
	Higher value of flowin MI	LD	12.5	MLD		
	Lower value of flow in lps		12	lps		
	Higher value of flow in In	s	145	lns	As	sumed from
	Tingher value of now in ip.	5	115	105	0.8	85 to 0.99
	Throat width (W) in m, from		0.38	m		
	Table					
	Mouth width (D)in m, fron	1	0.83	m		
	Table		0.00			
	Liquid depth in m at low f	low	0.06	m		
	Liquid depth in m at high		0.30	m		
	flow					
	velocity at mouth in low f	low	0.25	m/sec		
	in m/s					
	velocity at mouth in high		0.57	m/sec		
	flow in m/s					
	Approach channel width, 1	m	0.83	m		
_	Approach channel, liquid	_	0.30	m		
	depth, m					
	Approach channel, Length	ı, m	3.00	m		
	Free Board		0.7	m		

Total Depth						
Provide the Dimension	n of Approach Cha	nnel For Parshall	Plume as			
0.38mx0.	83mx3m SWD + 0.	7 m Freeboard				
7	7 EQUALIZATION TANK					
Average Design Flow	208.33	Cum/hr				
Hydraulic Retention Time	3.0	hours				
Volume of the Tank	625.00	Cum				
Assumed Depth of Liquid column (SWD)	4.0	m				
Area required for the equalization tank	156.25	Sq.m				
No. of Tanks Proposed	1					
Area required for each equalization tank	156.25	Sq.m				
	14.11					
Propose a Circular Tank						
Diameter of the Tank	14.11	m				
Say	14.50	m				
Actual Capacity Provided	660.19	Cum				
Check for Capacity			1			
Maximum Peak hours = 2 hour	S					
2hrs peak flow $= 2 \times 520$	0.83 =1041.66					
Has 2hrs average capacity $= 2x$	×208.33 =416.66					
Required Storage = 6	25.00 m ³					
Actual Storage Provided $= 660.19 > 625 \text{m}^3$						
Hence OK						
Provide the Dimension of E	qualization Tank d	iameter as 14.5 m	φ x 4 m SWD +			
	0.5 m Freeboar	rd				
7.1	MIXING EQUI	PMENT				

No . Of Tanks	1.00		
Capacity of Tank	660.2	Cum	
Mixing Rate	0.60	Cum/hr	
Capacity of Mixer	396.1	Cum/hr	
Mixing Rate	0.004	KW/m ³	
Capacity of Mixer	2.64	Kw	
	3.54	HP	
Say	4.00	HP	
Provide the Mixing Equip	ment of Size 4 HP	of Mixing Capac	city 0.6cum/hr
7.2 SEWA	GE PUMP PUMI	PING TO MBBR	
No. of pumps	3		(2W+1S)
Type of Pumps -			
Submersible Sewage			
Transfer /Horizontal			
Centrifugal- Non Clog)			
Average flow	5000.00	Cum/day	
Peak Design Flow	12500.00	Cum/day	
Number of working hours	20	hrs	
Flow Capacity of Each Pump required	312.50	Cum/hr	
Proposed pumps 2numbers (1W + 1SB), flow per Pump	312.50	Cum/hr	
	86.81	lps	
	0.087	Cum/sec	
Head required	10.00	m	
Efficiency	50	%	
HP required for pump	22.71	HP	(Q*H*9.81*0.7 5)/0.5
Provide Pumps of Capacity	25	НР	

Provide 3Nos of Submersible NC-SH Horizontal Centrifugal Pumps of 25HP with a Discharge of 312.50cum/hr						
8	8 MOVING BED BIO REACTOR (MBBR)					
	Average Design Flow	5000.00	Cum/day			
	No.of Streams	1.00				
	BOD of Incoming Sewage	250.00	mg/l			
	TSS of Incoming Sewage	400.00	mg/l			
	BOD required after treatment	10	mg/l			
	BOD to be removed	240	mg/l			
	No. of Tanks Proposed	2				
	PROCESS CALCULAT	ION	I	•		
	BOD Loading rate	3.50	Kg/Cum/Day	4-7 kg/cum/day as per Page 955, M&E		
	Quantity of BOD removed per Day	1200.00	Kg/Day			
	Volume of Reactor Required	342.857	Cum			
	Volume of Media Required	40.00	%			
	Media Volume Required	137.14	cum			
	Volume of Tank required	479.997 Say 480.00	cum			
	Considering 1 Streams, 2 Tanks					
	Volume of each Tank	240.00	cum			

	Assumed liquid Depth (SWD)	4.00	m	
	Area of each tank	60.00		
	Propose a Circular Tank			
	Diameter of the Tank	8.80	m	
	Say	9.00	m	
	Actual Capacity Provided	254.34	Cum	
Pr	ovide the Dimension of M	oving Bed Bio Rea	ctor (MBBR) Dia	as 9 m φ x 4 m
	S	SWD + 0.5 m Freeb	ooard	
	Provide inter	connection pipe = 2	200mm Dia DI K9	
9		AIR BLOW	ERS	
9.1	For MBBR Tank			
	Assumed BOD			
	reduction in the MBBR	95%	Percent	
	tank			
	Incoming BOD of Raw	250.00	mg/L	
	sewage	200.00	ing, 2	
	BOD to be reduced	237.50 say 240	mg/L	
	BOD Load	1200.0	kg/day	
	Oxygen required to remove BOD load	1.2	kg/kg of BOD	
	Oxygen required	1440.0	kg/day	
	Weight of O2 in 1kg of	0.232		Standard
	air	0.232		Standard
	Density of Air	1.201		Standard
	Ovugen Transfer			15 to 30 % for
	Efficiency	0.170		fine bubble
				diffuser

2018 Τ

	Oxygen Required per			
	Day	29133.94	Cum/day	
		1213.91	Cum/hr	
	Air Required	1213.91	Cum/hr	
	Safety Factor	25.00	%	
		303.48	Cum/hr	
	Add 20% for Anoxic			
	Equalisation Tank,	242.78	Cum/hr	
	Sludge Tank etc			
	Actual Air	17(0.10	C	
	Requirement	1/60.18	Cum/nr	
	No.of Blowers Working	1.00		
	Air Required per Blower	1760.18	Cum/hr	
	1cum/hr	0.59	cfm	
	Air Required in CFM	1038.50	cfm	
	Pressure	8.82	psi	(0.6kg/sqcm)
	Volumetric Efficiency	0.65	%	
	Power Requirement for Blower	61.44	HP	(0.00436*cfm* psi)/Eff
		45.83	KW	
	Say	50.00	Kw	
Pr	ovide 3Nos (2W+1S) of Ai	r Blowers of 25KV	W with a Discharg	ge of 1800cum/hr
10		SECONDARY CI	ARIFIER	
10	No of Stream	1	Nos	
	No of Tanks	1	Nos	
	Average Flow	208	Cum/hr	
	Retention Period	255	hrs	
	Volume of Tank	2.0		
	Required	520.8	Cum	
1	Volume of Each Tank	520.8	Cum	
	Assumed Depth	3.5	m	

	Area of Each Tank	148.81	sqm	
	Propose a Circular Tank			
	Diameter of the Tank	13.77	m	
	Say	14.00	m	
	Actual Capacity Provided	538.51	Cum	
Pro	ovide the Dimension of 1No	SECONDARY C	CLARIFIER Dia	as 14 m φ x 3.5 m
	S	WD + 0.5 m Free	board	
INF	LUENT PIPE			
	Velocity of Average	1.0	m/sec	
	Flow	1.0	III/ See	
	Area	0.145	sqm	
	Inner Dia of Feed Pipe	0.43	m	
	Say	450.00	mm	
11		SLUDGE SU	UMP	
	Sludge Generated			
	Average Flow	5000.00	cum/day	
	TSS	400.00	mg/l	
	BOD	250.00	mg/l	
	Assumed TSS Sludge	30	%	
	Assumed BOD Sludge	35	%	
	Slugde Generated - TSS	600.00	Kg/day	(Average Flow X 30% of TSS)
	Slugde Generated - BOD	437.50	Kg/day	(Average Flow X 35% of BOD)
	Total Sludge	1037.50	Kg/day	
	% of Sludge with 1.02Specific Gravity	1.00	%	

	Sludge Volume per Day	101.72	cum/dav	(Total Sludge x
	Studge volume per Day	101.72	cum/ day	10%)/1.02
		4.24	cum/hr	
	Sludge Sump		1	- 1
	Assumed Hydraulic	5.00	hr	
	Retention time	5.00	111	
	Volume of Tank	421.20	cum	
	Assumed Side Water	2.00	m	
	Depth	2.00	111	
	Area of the tank	10.60	sqm	
	Propose a Circular Tank			
	Diameter of the Tank	3.67	m	
	Say	3.75	m	
	Actual Capacity	22.88	Cum	
	Provided	22.00	Cum	
		I. T. A. I Cl., J D.	255 1 2	CUVD + 0.5
P	rovide the Dimension of II	No Total Sludge Di	a as 3.75m φ x 2	$\mathbf{m} \mathbf{SWD} + 0.5 \mathbf{m}$
Pı	rovide the Dimension of 11	Freeboard	a as 3.75m φ x 2	m SWD + 0.5 m
P	rovide the Dimension of 11	Freeboard	a as 3./5m φ x 2	m SWD + 0.5 m
P1 12		Freeboard THICKENER FEI	а as 3.75m ф x 2 ED PUMP	m SWD + 0.5 m
P1 12	General	Freeboard Freeboard	a as 3.75m φ x 2 ED PUMP	m SWD + 0.5 m
P1 12 a	General Application	Freeboard THICKENER FEI	a as 3.75m φ x 2 ED PUMP	m SWD + 0.5 m
Pr 12 a b	General Application Specific Gravity	Freeboard Freeboard THICKENER FEI Sludg 1.03	a as 3.75m φ x 2 ED PUMP	ckener (1W+1SB)
P1 12 a b	General Application Specific Gravity	Freeboard Freeboard THICKENER FEI Sludg 1.03 Non Clog	a as 3.75m φ x 2 ED PUMP	ckener (1W+1SB)
P1 12 a b c	General Application Specific Gravity Type	THICKENER FEI Sludg 1.03 Non Clog Submersible	a as 3.75m φ x 2 ED PUMP e Transfer to Thio	ckener (1W+1SB)
Pi 12 a b c d	General Application Specific Gravity Type Quantity	THICKENER FEI Sludg 1.03 Non Clog Submersible 2.00	ED PUMP The Transfer to Thio (1W+1S)	ckener (1W+1SB)
Pi 12 a b c d	General Application Specific Gravity Type Quantity Design Data	THICKENER FEI Sludg 1.03 Non Clog Submersible 2.00	ED PUMP The Transfer to Thio (1W+1S)	ckener (1W+1SB)
Pi 12 a b c d a	General Application Specific Gravity Type Quantity Design Data Pump Working Hours	THICKENER FEI Sludg 1.03 Non Clog Submersible 2.00	a as 3.75m φ x 2 ED PUMP e Transfer to Thio (1W+1S) hrs	m SWD + 0.5 m ckener (1W+1SB) (3 to 4 stages)
Pi 12 a b c d d	General Application Specific Gravity Type Quantity Design Data Pump Working Hours Capacity of pump	THICKENER FEI Sludg 1.03 Non Clog Submersible 2.00	a as 3.75m φ x 2 ED PUMP e Transfer to Thio (1W+1S) hrs	m SWD + 0.5 m ckener (1W+1SB) (3 to 4 stages)
Pi 12 a b c d d a b	General Application Specific Gravity Type Quantity Design Data Pump Working Hours Capacity of pump required	THICKENER FEI Sludg 1.03 Non Clog Submersible 2.00 10.00 10.17	a as 3.75m φ x 2 ED PUMP e Transfer to Thio (1W+1S) hrs Cum/hr	m SWD + 0.5 m ckener (1W+1SB) (3 to 4 stages)
Pi 12 a b c d d a b	General Application Specific Gravity Type Quantity Design Data Pump Working Hours Capacity of pump required	THICKENER FEI Sludg 1.03 Non Clog Submersible 2.00 10.00 10.17 0.00283	a as 3.75m φ x 2 ED PUMP e Transfer to Thio (1W+1S) hrs Cum/hr Cum/Sec	m SWD + 0.5 m ckener (1W+1SB) (3 to 4 stages)

d	Max Solid Size	40.00	mm	
	Permissible			
e	Efficiency	50	%	
f	HP required for pump	1.109	hp	
g	Recommended Size	1.250	HP	
h	BKW at Duty Point	0.933	KW	
	Material of	20.00		
	Construction	20.00		
a	Casing	2% Ni - CI		
b	Impeller Semi Open	CF-8M		
c	Rotor Shaft	SS-410		
d	Fasteners in Liquid	SS-410		
	Materia	CI IS 210 Gr. FG		
e	Motor Housing	260		
	Motors :	20.00		
a	Туре	Submersible		
b	RPM	1450		
c	Frequency	$50 \pm 3\%$ HZ		
d	Voltage	415 + 6% - 10%		
e	Insulation	Class - F		
f	Enclosure	IP - 68		
f	Quantity	1 No of Each		
1	Quantity	pump		
g	KW	1.000		
	Recommended Delivery	100.00	mm	
	Line	100.00	111111	
Pr	ovide 2Nos (1W+1S) of T	hickener Feed Pum	p of 1.25HP with	a Discharge of
	``'	10.5cum/hr	-	6

	SLUDGE	THICKENER	(GRAVITY TYPE)
	No of Units	1.00		
	Total Sludge	1037.50	Kg/day	
	Solids Loading Rate	40.00	Kg/sqm/day	
	Thickening Area Required	25.94	Sqm	Total Sludge/SLR
	Surface Loading Rate	12	Cum/sqm/day	
	Sludge Volume per Day/SLR	8.48	m ³	
	Max Area taken	25.94	Sqm	
	Area of Distribution Chamber	10.00	%	
	Total Area Required	28.53	Sqm	
	Propose a Circular Tank			
	Diameter of the Tank	6.03	m	
	Say	6.20	m	
	Thickener Area Available	30.18	sqm	
	Side Water Depth (SWD)	3.00	m	
	Actual Volume Provided	90.53	Cum	
	Thickened Sludge Consistency	3.00	%	
	Thickened Sludge Volume	31.13	cum/day	3% of Total Sludge
ov	vide the Dimension of 1No S 6.2 m φ x	SLUDGE THIC 3 m SWD + 0.5	CKENER (GRAVI) 5 m Freeboard	TY TYPE) Dia

Thie	ckened Sludge Pump			
	Inlet Pipe Diameter			
	Flow	10.1716	cum/hr	
		0.0028	Cum/sec	
	Velocity	1.00	m/sec	
	Pipe Area Required	0.0028	Sqm	
	Pipe Dia	0.0600	m	
	Say	100	mm	
	Thickener Mechanism			
	Type	Central Drive		
	Type	Туре		
	Material of			
	Construction			
я	Sections	MS Sections as		
u		per IS - 226		
h	Walkway	5mm Chequered		
U	w unit wuy	Plates		
14	FILTER	PRESS / CENTRIF	UGE FEED PUM	(P
	Туре	Screw Pump		
	No. of pumps	2	Nos	(1W+1S)
	No of Working Pump	1	Nos	
	Volume to be Pumped	31.13	Cum/day	
	Centrifuge Working	8 00	hrs	
	Hours	0.00	1115	
	Capacity required in	3.89	Cum/hr	
	Pump			
	Capacity Provided	4.00	Cum/hr	
		0.0011	Cum/Sec	
	Head	15.00	m	
	Efficiency	50	%	

	HP required for pump	0.444	hp	
	Say	1.0	HP	
	Load	0.746	KW	
	Recommended Delivery	150	mm	
	Pipe	150	11111	
]	Provide 2Nos (1W+1S) of	Centrifuge/Filter	Press Feed Pum of 1.	0HP with a
		Discharge of 4.0cu	ım/hr	
	-			
15		SLUDGE CENT	RIFUGE	
	Sludge Flow Rate to Cent	rifuge		
	No of Centrifuges	2.00	(1W + 1S)	
	Capacity of Centrifuge	0.84	Cum/hr	
	Poly Electrolyte			
	Dosing For Centrifuge	10.00	%	
	& Thickener			
a	Dosing Tanks			
	Sludge Volume	1037.50	Kg/day	
	Dose	2.00	Kg/1000kg	
	Quantity of Poly	2.08	K a/Day	
	Electrolyte	2.08	Kg/Day	
	Concentration	0.10		
1				
	Volume of Tanks @	2.08	Cum	
	Volume of Tanks @ 24hr	2.08	Cum	
	Volume of Tanks @ 24hr	2.08	Cum	
	Volume of Tanks @ 24hr Volume	2.08 2080.00 86.67	Cum litres lit/hr	
	Volume of Tanks @ 24hr Volume Volume required for	2.08 2080.00 86.67	Cum litres lit/hr	
	Volume of Tanks @ 24hr Volume Volume required for 8hrs	2.08 2080.00 86.67 0.69	Cum litres lit/hr Cum	
	Volume of Tanks @ 24hr Volume Volume required for 8hrs Liquid Depth of Tank	2.08 2080.00 86.67 0.69 1.50	Cum litres lit/hr Cum m	
	Volume of Tanks @ 24hr Volume Volume required for 8hrs Liquid Depth of Tank Area Required	2.08 2080.00 86.67 0.69 1.50 0.46	Cum litres lit/hr Cum m sqm	
	Volume of Tanks @ 24hr Volume Volume required for 8hrs Liquid Depth of Tank Area Required Propose a Square Tank	2.08 2080.00 86.67 0.69 1.50 0.46	Cum litres lit/hr Cum m sqm	

	Say	0.75	m			
Pro	vide the Dimensions of I	Dosing Tanks as 0.7	/5 m x 0.75 m x 1.5	m SWD + 0.5 m		
	Freeboard					
b	Dosing Pumps					
	No of Dosing Pumps	2.00	(1W + 1S)			
	Required capacity of	0.4.47	1. /			
	Dosing Pumps	86.67	lit/hr			
	Provided Volume of	0.84	Cum			
	Tank	0.84	Cum			
	Velocity Gradient	300.00	S^-1			
	Constant at 200cc Water	0.001139				
	Temperature	0.001139				
16	CHI	LORINE CONTAC	CT TANK (CCT)			
	Туре	Square				
	Hydraulic Retention	20.00	Minutos			
	Time	50.00	winnutes			
	Average Flow	208.33	Cum/hr			
	Volume of the tank	104.17	Cum			
	Assumed Liquid Depth	3.00	m			
	Area of the Tank	34.72	Sq.m			
	Propose a Square Tank					
	Length = Breadth	5.89	m			
	Say	6.00	m			
Р	rovide the Dimensions of	f Sludge Flow Rate	to Centrifuge as 6	m x 6 m x 3 m		
		SWD + 0.5 m Free	eboard			
17		GAS CHLORI	NATOR			
	Dosing Rate					
	Chlorine Mixing					

	Average Flow	5000.00	Cum/day	
	Chlorine Dosing Rate	2	mg/L	
	Capacity of Gas	0.42	kg/hr	Say 0.5kg/hr
	Chlorinator Required	0.42	Kg/III	Say 0.5Kg/III
	No of Dosing Pumps	2	(1W+1S)	
	Туре	Vacuum Feed Type		
		Flow Proportional		
		Dosage		
	Daily Requirement	10.00	kg	
	Monthly Requirement	300.00	Kg	
18		PRESSURE SAND	FILTER	
	Average Flow	5000.00	Cum/day	
	Filter Operating hours	20.00	hrs	
	Operating flow	250.00	Cum/hr	
	Filter Loading rate	12.00	Cum/hr/Sq.m	
	Area of the Filter	20.82	Sam	
	required	20.83	Sq.m	
	No.of Filters	3.00		
	Area of each Filter	6.94	Sq.m	
	Diameter of the Filter	3.00	m	
	Required	5.00	111	
	Heigh of the filter	2.50	m	
	Operating Pressure	3.50	Bar	
	Test Pressure	5.25	Bar	
	Filter Media	Sand &	Antracite (Dual M	edia)
Pr	ovide the Dimension of	3Nos of Pressure San	d Filter as 3 m x	Diametre with
		2.5m Shell heigh	nt	
19	A	ACTIVATED CARB	UN FILTER	
	Average Flow	5000.00	Cum/day	
	Filter Operating hours	20.00	hrs	

	Operating flow	250.00	Cum/hr	
	Filter Loading rate	10.00	Cum/hr/Sq.m	
	Area of the Filter	25.00	Sam	
	required	25.00	5q.m	
	No.of Filters	3.00		
	Area of each Filter	8.33	Sq.m	
	Diameter of the Filter	3.00	m	
	Required	5.00	111	
	Height of the filter	2.50	m	
	Operating Pressure	3.50	Bar	
	Test Pressure	5.25	Bar	
	Filter Media		Activated Carbon	
Р	Provide the Dimension of 3	Nos of ACTIVAT	FED CARBON FII	LTER as 3 m x
	Diam	etre with 2.5 m S	shell height	
20		FILTER FEED	PUMPS	
	Provide Filter feed pumps	250.00	Cum/hr	
	of capacity	20000		
	Capacity of pump required	69.44	lps	
		0.0694	Cum/Sec	
	Head	30.00	m	
	Efficiency	50	%	
	HP required for pump	55 556	hp	(Q*H*9.81*0.7
	in required for pump	22.220	p	5)/0.5
	Say	60.0	HP	
	Power requirement for the	44 76	Kw	
	Pump	11.70	11.00	
	Provide 2Nos (1W+1S) of	f Filter Feed Pum	p of 56HP with a l	Discharge of
		250cum/hr		
21	,	TREATED WAT	TER TANK	
	Hydraulic Retention Time (HRT)	60.00	Minutes	
-----	--	------------------	---------------------	-----------------
	Average Flow	208.33	Cum/hr	
	Volume of the tank	208.33	Cum	
	Assumed Liquid Depth	3.00	m	
	Area of the Tank	69.44	Sq.m	
	No . Of Tanks	2.00	Nos	
	Area of Single Tank	34.72		
	Propose a Square Tank			
	Length = Breadth	5.89	m	
	Say	6.00	m	
Pre	ovide Filter feed pumps of	capacity as 6m x	6 m x 3m SWD + 0	0.5 m Freeboard
22		EFFLUENT CI	HANNEL	
	Peak Flow	0.145	Cum/Sec	
	Average Flow	0.06	Cum/Sec	
	Velocity	1.00	m/sec	
	Area at Peak Flow	0.14	Sq.m	
	Area at Average Flow	0.06	Sq.m	
	Assume Width of Channel	0.60	m	
	Depth of Channel required	0.24	m	
	Free Board	0.50	m	
	Total Depth	0.74		
	Say	1.00	m	
	Provide Effluent Channel for Ultimate Capacity	Prov	vide 0.6 x 1.0m Cha	innel

CHECK FOR HYDRUALIC SLOPE

-	Hydrualic Radius at	0.12		Area/Wetted
a	Peak Flow, R	0.15	III	Perimeter
	Velocity	1.00	m/sec	
	Mannings Co-efficient,	0.012		
	n	0.015		
	Mannings Formula	V =		
	Mainings Fornula	1/n*R^2/3*S^1/2		
	Hence Slope, S	0.0025	m	
	Hence Fall in 50m	0.13	m	
				L
24 DESIGN OF CENTRATE SUMP				
	Centrate volume	101.72-7.78=	m ³	
	Contracte Volume	93.94		
	SWD	2.5	m	
	Area	37.57	m^2	
	HRT	12	hrs	
Pro	vide centrate sump of dim	ension as 5m x 4m x	x 2.5m SWD +	0.5 m Freeboard
25	QU	JANTITY OF EFFL	LUENT/DAY	
	500	$0m^3 - 101.72 = 48$	398.28m ³	

Chapter 9

ENVIRONMENTAL ASSESSMENT

9.1 Introduction

The present project is to be implemented to treat the Sewage generated with a treatment plant of capacity 5 MLD for Kerala Water Authority at Elamkulam, Eranakulam. The environmental impact assessment study pertains to the sewage treatment plant proposed.

- **Purpose:** The purpose of impact assessment study is to identify potential adverse and beneficial environmental impacts, and to document the mitigation and monitoring measures that would be incorporated in project to eliminate or minimize the adverse impacts.
- Scope: The components of this project include construction of a new sewage treatment plant. The study is based on field surveys, secondary data and design data.

9.2 Description and Need of the project

- Need for the Project: The proposed project will provide Sewage Treatment for the households and commercial institutions in and around Elamkulam.
- Location: The project location is near to the SahodaranAyyappan (SA Road) and it is approximately 150m away from SA road through Fathima church road. The location is blundered by Chettithara canal on its either sides. The available space of an area of 2.5 acres.
- **Coverage:** The present proposed treatment plant has a capacity of 5 MLD which covers population of 30000 in Ernakulam district.

9.3 Applicable Environmental Regulations

Applicable environmental regulations for proposed project are mentioned in details below

- a. Disposal of sewage generated during construction phase will attract the provisions of the Water (Prevention and Control of Pollution) Act, 1974 and requires consents to establish and operate from the Andhra Pradesh Pollution Control Board.
- b. Installation of generators and concrete mixture plant by the contractor during the construction stage of the project would require NOC from the Andhra Pradesh Pollution Control Board as per the Air (Prevention and Control of Pollution) Act, 1981.
- c. The proposed project in construction phases may attract the provisions of Noise Pollution (Regulation and Control) Rules, 2000 if the noise level from the construction machinery and equipment is high.

9.4 Baseline Environmental Profile

9.4.1 Physical Resources

- Air Quality: No major sources of air pollution were identified during the field surveys except for foul gases within the existing STP due to dysfunctional unit. The traffic flow is expected to have some impact on air quality.
- **Noise Levels:** With the existing road carrying traffic passing through busy commercial areas, the noise levels of the region seems to be high.

9.4.2 Ecological Resources

As the project area highly urbanized, presence of wildlife or endogenous species is very unlikely. In addition, within the project area there are no forests, protected areas, costal resources or fisheries.

9.4.3 Economic Development

- > Land Use: Predominant land use in the project area is outside the CDP.
- Water Supply: Water supply in the Sewage Treatment Plant location presently is dependent on ground water
- Sewerage and Drainage: Area around STP is partially sewered. The area is served by round surface drains.
- > Transportation: The site is situated near to SA road and is easily accessible.

Electric Power: Project area falls inside the service area of KSEB.

9.4.4 Environmental and other significant features

There are no significant environmental and other significant features in the location. The land has been identified in the existing STP site premises, which is under the possession of **KWA**.

9.5 Potential Environmental Impacts and Mitigation Measures

The proposed project influences environment in two distinct phases.

- > During Construction phase which would be temporary and short term effects;
- > During Operation phase which would have long term effects.

9.5.1 Environmental Impacts during Construction Phase

During the construction phase there would be some impacts on air, noise and water quality. Also there would be some impacts on life due to inconvenience caused to public as a result of construction activity.

- Air quality impacts are likely from general construction activities including land clearing, trenching, laying of pipes, construction of foundations, handling and transportation of construction and demolition materials, and from wind erosion of open sites and stock pile areas.
- Noise pollution will occur from operation of construction equipment including earth moving and material handling equipment.
- Water quality impacts may occur from runoff and waste and sewage generated from construction activity.
- Disposal of excavated soils, road crust, and precipitate from drainage channels will not pose a problem; however, disposal of silt may require adequate protection.
- Traffic congestion, lacks of access to buildings and air and noise pollution caused by construction activities could have some adverse impacts on trade and commerce in the service area.

9.5.2 Environmental Impacts during Operation Phase

During operation period phase the environmental impacts are likely to be positive. However, there could be some adverse impacts due to operation and maintenance or control.

Lack of proper operation and maintenance of the system could cause over flow of sewage and water logging during rainy season, which would be a nuisance and health hazard to public.

Due to lack of control there may be discharge of industrial effluents into the sewer, which can damage the sewer system, or interfere with downstream treatment process or pass through the treatment plant and cause damage to the environment.

There is potential health hazard to workers engaged in sewer maintenance work. These workers are likely to be exposed to toxic gases and hazardous materials present in the sewage and are likely to contract communicable diseases from exposure to pathogens present in the sewage.

9.5.3 Positive Impacts

As a result of providing Sewerage treatment facility, it ensures better sanitation practices and minimizes the groundwater pollution. This would lead to:

- Abatement of nuisance and public health hazard in the service area. Improved sanitary conditions would result in reduction in incidences of parasitic infections, hepatitis and various gastrointestinal diseases including cholera and typhoid which occur either through direct contact with faecal material or contamination of water and food;
- Fewer incidence of disruption of transportation;
- Accelerate economic growth as a result of improved quality of life within the service area.
- Improvement of water quality of of the area; and
- Employment for local people during the construction phase.
- Minimise water and vector borne diseases.

9.5.4 Mitigation Measures - Construction Phase

Following measures are recommended for mitigation or minimizing the environmental impacts that are likely to occur during the construction phase of the proposed project. The contractor under supervision and direction of super vision consultant shall implement these mitigation measures.

a. Provision of Erosion

- Construction will be scheduled so that large areas of soil are not laid bare during monsoon.
- ▶ Ground disturbances will be phased so that it is limited to workable size.
- Exposed surface will be resurfaced and stabilized as soon as possible.
- Trenches will have adequate backfill to prevent subsequent street settlement. Upon completion of backfill the surface shall be restored fully to the level that existed prior to the construction of the sewer.

b. Prevention of Dust Nuisance

- On exposed construction surface during dry/windy periods fugitive dust generation will be suppressed by spraying of water or other suitable means.
- > Workers working in dust prone areas will be provided with masks and goggles.
- Excavated material transported by trucks will be cover and/or wetted to prevent dust nuisance.

c. Noise and Emission from Vehicles and Construction Activities

- All construction vehicles will be properly maintained and will have valid "Pollution under Control Certificate".
- Noisy construction activities will be carried out only during normal working hours and local residents will be advised of any unusual or unavoidable noise.
- > Where feasible sound barrier will be provided in inhabited areas.
- Prevention of Soil, Ground and/or Surface Water Contamination
- Silt after dewatering will be immediately disposed in approved disposal site.
- > Excess excavated soil and spoils will be disposed in approved disposal site.
- Prevention of Water Logging / Flooding

d. Prevention of Soil, Ground and/or Surface Water Contamination

- > Silt after dewatering will be immediately disposed in approved disposal site.
- > Excess excavated soil and spoils will be disposed in approved disposal site.

e. Prevention of Water Logging / Flooding

De-watering during trenching and water testing of new lines will be regulated in a manner sothat it does not lead to water logging of the nearby area.

f. Relocation of Utility Services

- Utility services such as telephone line, electric poles, and water lines etc. That will be impacted by project construction will be identified and prior assistance from concern authorities will be sought to remove, relocate and restore services of these utilities.
- It will be ensured that these utilities are not damaged due to construction activities.

g. Road Safety and Traffic Management during construction

Corporation in coordination with its consultant will prepare a traffic management plan for approval from the concerned authority. The plan will include:

- Measures to be taken to prevent traffic congestion.
- Provision of temporary safe assess to buildings, which will be blocked due to construction.
- Measures to be taken to ensure safety of traffic passing through the construction area including signs, markings flags, lights and flagmen as may be required.

h. Prevention of Accidents and Damage to Property

All necessary precautions will be taken to prevent accidents and damage to property due to construction activity. Measures taken by contactor will include but not limited to:

- Safe execution of construction work.
- Providing adequate health and safety protection to workers.

i. Health and Safety of Workforce

- All the occupational, health and safety requirement for workforce will be adhere to.
- > Periodic health check-up of workers will be provided.
- > First aid kit will be provided at construction worksite.
- During the plant cleaning operation the tanks will be adequately vented to ensure that no toxic or hazardous gases are present in the line.
- Workers engaged in cleaning of Sewage treatment plant will be provided with proper protection cover including gumboots, rubber gloves and gas masks.
- j. Environmental Health and Safety Considerations at Camp Sites and Construction Worksites
 - Camps/compounds will be contained by surrounding the site with a bund or earth mound.
 - Camp site will be provided with good quality and sufficient quantity of drinking water and sanitation facilities.
 - > First aid kit and other safety measures will be provided at camp site.
 - Solid waste collection and suitable disposal system provided at camp site.
 - > Appropriate control measures will be taken to prevent insects/vector diseases.

k. Mitigation Measures- Operation Phase

- To alleviate the proper functioning it would be necessary for ULB to undertake continual routine maintenance of the system. Periodic preventive maintenance carried out by ULB would prevent the plant from shut down.
- Periodic monitoring carried out by KSPCB to ensure the quality of treated water and its proper discharge or reuse.

9.6 Environmental Monitoring Plan

Effective implementation of the mitigation measures to mitigate or minimize the environmental impacts would require the project to undertake a comprehensive monitoring programme. The objective of the monitoring programme is to ensure that the construction and operation activities are carried out in an environmentally sensitive and responsible manner, and in accordance with the recommendations of EMP. Recommended monitoring activities of the proposed project is presented in Table 9.1

 Table 9.1: Environmental Monitoring Programme of Construction of STP in

 Elamkulam

Monitoring	Type of Monitoring	Minimal
Category		Frequency
Construction Phase		
Soils		
Excavation and Back Filling	Monitor adherence to contract specifications	Daily
Erosion	Monitor proper management of excavated soils including timely removed material from project site	Monthly
Surface and Ground W	Vater Quality	
Surface runoff management	Monitor measures to channelize surface runoff	Daily
Contamination from waste and sewage generated from construction activities	Monitor measures taken to prevent contamination of ground and/or surface water from waste and sewage generated from construction activities	Daily
Air/Noise Pollution		
Dust emission during site preparation, excavation	Monitor adequacy of dust suppression measures undertaken	Daily
Storage and transportation of construction materials, excavated soil and silt	Monitor adequacy of measures undertaken to prevent fugitive measures	Daily

Noise and emissions from construction vehicles	Noise and emissionsMonitor 'Pollution under Control' certificate are current for construction vehicles.	
Noise pollution from construction activities	Monitor preventive measures being implemented to curb noise.	Daily
Solid Waste		
Disposal of excavated soil and silt	Monitor to ensure excavated soil and silt are being disposed in approved sites	Weekly
Health and safety of co	onstruction workforce	
Health and Safety Requirements	Monitor adherence to all occupational and safety requirements	Weekly
Health Checkup of workers	Monitor adequacy of health checkup services provided including attendance of the physician retained and the extent to which the workforce is availing this service	Monthly
Maintenance of Health and Safety records of work force	Review and monitor health and safety records to ensure all project related accidents are being properly investigated and reported	Monthly
Sanitary conditions of construction campsite	Monitor provisions of shelter, water supply, excreta and solid waste management at campsite	Monthly

Road Safety and Traffic Management				
Traffic Management Plan	Obtain approval to traffic management plan from concerned authority			
Review road safety records	Review and monitor road safety records to ensure all projects related road accidents are being properly investigated and reported	Fortnightly		
Community Life and F	Conomic Activities			
Access to public and private properties	Monitoring impacts of project on dwelling and business in the project area	Daily		
Hardship and inconvenience to public and business	Monitor to ensure that communities and business face minimal hardship and inconvenience due to construction activities	Weekly		
Operation Phase				
Regular Maintenance of Sewage treatment plant	Monitor to ensure that enough quantity of feed is made available for the plant to work continuously	Weekly		
Discharge of treated wastewater and dried sludge	Monitor discharge of treated water and sludge and review of consent to operate forms submitted to the KSPCB	On-going Monthly		

As mentioned in the above table monitoring programme would be strictly implemented to avoid any adverse impacts on surrounding environment due to project activity. Also during construction activity periodically air and noise quality monitoring shall be carried out near the sensitive locations to ensure the pollution status in the service area.

9.7 Conclusion

From the earlier sections it is conclude that the project is not expected to cause any long term irreversible environmental impact. Most of the environmental impacts that are likely will occur for a short duration during the construction phase of the project. Adequate preventive measures have been incorporated to mitigate or minimize these impacts. The project upon completion would realize several positive impacts, most significant of which being reduction of public health hazard as result of improved sanitation conditions in the service area.

Chapter 10 SIZING OF THE STP UNITS

Table 10.1: Details of Various STP Units

SI NO	COMPONENT	Capacity/Sizing	Nos.	MOC			
A	CONVEYANCE SYSTEM						
1	Collection system	Laying 120m , 2Nos of 600 K9 DI pipe pumping main to the new Receiving Chamber	1 set	DI Pipe K9			
В	CIVIL WORKS - STP						
1	Receiving Chamber	2.50x1.50x2.50 m	1	RCC			
2	Mechanical Coarse Screen channel	4.00x0.45x1.00 m	1	RCC			
3	Mechanical Fine Screen channel	4.00x0.45x1.00 m	1	RCC			
4	Manual Coarse Screen channel	3.70x0.41x1.00 m	1	RCC			
5	Grit Separator	3.65 x 3.65 x 1.20 m	1	RCC			
6	Parshall Flume	3.0 m x 0.83 x 0.38m x 1.20m	1	RCC			
6	Anox Equalisation Tank	14.5m Dia X 4.5m	2	RCC			
7	Moving Bed Bio Reactor (MBBR)	9m Dia X 4.5m	2	RCC			

8	Secondary clarifier	14m Dia X4.0m	1	RCC
9	Sludge sump	3.75m Dia X 2.5m	1	RCC
10	Sludge Thickener	6.2m Dia X 3.5m	1	RCC/MS
11	Secondary Treated water sump	6.0m x 6.0 x 3.5m	1	RCC
12	Tertiary treated water sump ((Chlorine contact tank))	6.0m x 6.0 x 3.5m	1	RCC
13	Pump Houses (Pre- fabricated)	2.0m x 2.0m x 3.0m	3	RCC
14	Sludge Yard	4.0m x 6.0m x 4.0 m	1	RCC
15	Centrifuge Shed	4.0m x 6.0m x 6.0 m	1	RCC
16	Control Room	4.0m x 6.0m x 4.0 m	1	RCC
17	Generator Basement	4.0m x 3.0m	1	RCC
18	Chemical Dosing Room	4.0m x 3.0m x 4.0m	1	RCC
19	Centrate Sump	1.5m Dia x 2.5m	1	RCC
20	Substation Control Panel Room	10.0m x 4.0m x 3.50m	1	RCC
21	Office Building	22.0m x 11.0m x 10.0m	1	RCC
С	ELECTRO-MECHAN	IICAL WORKS STP		
1	Mixing Equipment	4HP (1W+1SB)	2	

2	Sewage Transfer Pump (Pumping to MBBR)	23HP (2W+1SB)	2	Submersible CI IS 210 Gr. FG 260
3	Mechanically operated screen	1 No to suit the channel size, (70degree)	1	SS 304 Clear opening 20 & 6 mm.
4	Manually operated screen	1 No to suit the channel size, (70degree)	1	SS 304 Clear opening 20 mm.
5	SS Gates	LOT		SS 304
6	Air Grid and diffusers for ET, MBBRs and sludge sump	LOT		PVC
7	MBBR Media	LOT		PVC/HDPE
8	Air Blowers	50 KW; 1800cum/hr	2	Type : Positive dis placement (Twin Lobe type) MOC : C.I.IS 210 Gr. FG 260 MOC : S.S
9	Thickener Feed Pump (Pumping to Thickener)	1.25HP (1W+1SB)	2	Submersible CI IS 210 Gr. FG 260
10	Centrifuge/Filter Press Feed Pump (Pumping to Thickener)	1.0HP (1W+1SB)	2	Submersible CI IS 210 Gr. FG 260
11	Sludge Centrifuge	0.84Cum/hr	2	

12	Filter feed pump (PSF & ACF)	56 HP	2	CI Wetted parts in SS304, Mono- block
13	PSF (Dual Media)	3.0m dia 2.50m high	3	MS/PP with butterfly valves
14	ACF	3.0m dia 2.50m high	1	MS/PP with butterfly valves
15	Jetting / Cleaning Machine		1	High Pressure pump
16	Generator	250KVA	1	
17	Transformer	250KVA	1	Indoor Type
18	Chlorinator	Elecro type chlorinator or similar equipments of capacity 500gm/hr dosing		

Table	10.2:	Load	Requiremen	t
-------	-------	------	------------	---

		Power Re	equirement		
Sl	Component			Туре	Make
No.		Working	Standby		
1.	Mixing Equipment	4 HP	-		
2.	Sewage Transfer Pump	46 HP	23 HP	Submersible	
3.	Air Blower	50 HP	25 HP	Twin Lobe	
4.	Thickener Feed Pump	1.25 HP	1.25 HP	Screw	
5.	Centrifuge Feed Pump	1 HP	1 HP	Screw	
6.	Filter Feed Pump	56 HP	56 HP	CF-mono lob	KIRLOSKAR /CROMPTON /Equivalent
7.	Lifting	7.5 HP	-	-	
	Total	165.75 HP	106.25 HP		

Chapter 11

COSTING

Table 11.1: General Abstract

A COLLECTION SYSTEM 1 Extention of 600m DI Pumping Mains 8930000 SUB TOTAL 8930000 B PILING 38270000 1 Pile Foundations for Civil Tanks 38270000 SUB TOTAL 38270000 B STP CIVIL WORKS 1 1 Site Clearing, Levelling & Shifting of Materials 1632000 2 Receiving Chamber, Screen Channel & Grit Chamber 2386000 3 Equalisation Tank 6780000 4 MBBR -01 2410000 5 MBBR -02 2410000 6 Clarifier 5738000 7 Sludge Sump 500000 8 Sludge Thickener 123000 9 Thickened Sludge Sump 500000 10 Filter Feed Tank 1650000 11 Treated Water Tank 1650000 12 Centrate Sump 336000 13 Treated Water Channel 267000 14 Sludge Storage Yard 811000 15 Transformer Housing, Control Room & Laboratory Building 4300000	1	ABSTRACT OF ESTIMATE FOR 5MLD STP AT ELAMKU	LAM, KOCHI
1Extention of 600m DI Pumping Mains8930000SUB TOTAL8930000BPILING1Pile Foundations for Civil Tanks38270000SUB TOTAL38270000BSTP CIVIL WORKS1Site Clearing, Levelling & Shifting of Materials16320002Receiving Chamber, Screen Channel & Grit Chamber23860003Equalisation Tank67800004MBBR - 0124100005MBBR - 0224100006Clarifier57380007Sludge Sump5000008Sludge Thickener12300009Thickened Sludge Sump50000010Filter Feed Tank165000011Treated Water Tank165000012Centrate Sump33600013Treated Water Channel26700014Sludge Storage Yard81100015Transformer Housing, Control Room & Laboratory Building43000016Centrifuge Building213000017Landscaping76700018Pump House (4Nos)78800017Landscaping2290000018SUB TOTAL2290000019Itternal Roads, Walkways & Storm Water Drain574800017Landscaping2290000018SUB TOTAL2290000019Itternal Roads, Walkways & Storm Water Drain574800010SID TOTAL2290000011STP Eqerticals work1100000011STP Elec	Α	COLLECTION SYSTEM	
SUB TOTAL8930000BPILING1Pile Foundations for Civil Tanks38270000SUB TOTAL38270000BSTP CIVIL WORKS1Site Clearing, Levelling & Shifting of Materials16320002Receiving Chamber, Screen Channel & Grit Chamber23860003Equalisation Tank67800004MBBR - 0124100005MBBR - 0224100006Clarifier57380007Sludge Sump5000008Sludge Thickener12300009Thickened Sludge Sump50000010Filter Feed Tank165000011Treated Water Tank165000012Centrate Sump33600013Treated Water Channel26700014Sludge Storage Yard81100015Transformer Housing, Control Room & Laboratory Building430000016Centrifuge Building213000017Filter & Generator Foundations271300018Pump House (4Nos)78800017Landscaping76700010SUB TOTAL4397900012SUB TOTAL2290000013STP Equipments wit plant Piping2290000014SUB TOTAL2290000015STP Electricals work1100000010Filterkiels work1100000011STP Electricals work1100000014SUB TOTAL125579000	1	Extention of 600m DI Pumping Mains	8930000
BPILING1Pile Foundations for Civil Tanks38270000SUB TOTAL38270000BSTP CIVIL WORKS1Site Clearing, Levelling & Shifting of Materials16320002Receiving Chamber, Screen Channel & Grit Chamber23860003Equalisation Tank67800004MBBR - 0124100005MBBR - 0224100006Clarifier57380007Sludge Sump5000008Sludge Thickener12300009Thickened Sludge Sump50000010Filter Feed Tank165000011Treated Water Tank165000012Centrate Sump33600013Treated Water Channel26700014Sludge Storage Yard81100015Transformer Housing, Control Room & Laboratory Building430000016Centrifuge Building213000017Filter & Generator Foundations271300018Pump House (4Nos)78800019Internal Roads, Walkways & Storm Water Drain574800017Landscaping2290000018SUB TOTAL2290000010SUB TOTAL2290000011STP Equipments wit plant Piping2290000012SUB TOTAL2290000013STP Electricals work1100000014SUB TOTAL2290000015STP Electricals work1100000016FURNITURES & LABORATORY ITEMS500000<		SUB TOTAL	8930000
1Pile Foundations for Civil Tanks3827000SUB TOTAL38270000BSTP CIVIL WORKS1Site Clearing, Levelling & Shifting of Materials16320002Receiving Chamber, Screen Channel & Grit Chamber23860003Equalisation Tank67800004MBBR - 0124100005MBBR - 0224100006Clarifier57380007Sludge Sump5000008Sludge Thickener12300009Thickened Sludge Sump50000010Filter Feed Tank165000011Treated Water Tank165000012Centrate Sump33600013Treated Water Channel26700014Sludge Storage Yard81100015Transformer Housing, Control Room & Laboratory Building430000016Centrifuge Building213000017Filter & Generator Foundations271300018Pump House (4Nos)78800019Internal Roads, Walkways & Storm Water Drain574800010SUB TOTAL2290000020MECHANICAL WORKS229000001STP Electricals work110000001STP Electricals work110000001STP Electricals work110000001STP Electricals work110000001SUB TOTAL125579000	В	PILING	
SUB TOTAL38270000BSTP CIVIL WORKS11Site Clearing, Levelling & Shifting of Materials16320002Receiving Chamber, Screen Channel & Grit Chamber23860003Equalisation Tank67800004MBBR - 0124100005MBBR - 0224100006Clarifier57380007Sludge Sump5000008Sludge Thickener12300009Thickened Sludge Sump50000010Filter Feed Tank165000011Treated Water Tank165000012Centrate Sump33600013Treated Water Channel26700014Sludge Storage Yard81100015Transformer Housing, Control Room & Laboratory Building430000016Centrifuge Building213000017Filter & Generator Foundations271300018Pump House (4Nos)78800019Internal Roads, Walkways & Storm Water Drain574800017Landscaping767000SUB TOTAL229000001STP Equipments wit plant Piping229000001STP Electricals work110000001STP Electricals work110000001STP Electricals work110000001FI Electricals work110000001FI Electricals work110000001FI Electricals work11000000	1	Pile Foundations for Civil Tanks	38270000
BSTP CIVIL WORKS1Site Clearing, Levelling & Shifting of Materials16320002Receiving Chamber, Screen Channel & Grit Chamber23860003Equalisation Tank67800004MBBR - 0124100005MBBR - 0224100006Clarifier57380007Sludge Sump5000008Sludge Thickener12300009Thickened Sludge Sump50000010Filter Feed Tank165000011Treated Water Tank165000012Centrate Sump33600013Treated Water Channel26700014Sludge Storage Yard81100015Transformer Housing, Control Room & Laboratory Building430000016Centrifuge Building213000017Filter & Generator Foundations271300018Pump House (4Nos)78800017Landscaping767000SUB TOTAL229000002SUB TOTAL2290000010STP Electricals work1100000011STP Electricals work1100000011STP Electricals work1100000012FILERRICAL WORKS1100000013STP Electricals work11000000		SUB TOTAL	38270000
1Site Clearing, Levelling & Shifting of Materials16320002Receiving Chamber, Screen Channel & Grit Chamber23860003Equalisation Tank67800004MBBR - 0124100005MBBR - 0224100006Clarifier57380007Sludge Sump5000008Sludge Thickener12300009Thickened Sludge Sump50000010Filter Feed Tank165000011Treated Water Tank165000012Centrate Sump33600013Treated Water Channel26700014Sludge Storage Yard81100015Transformer Housing, Control Room & Laboratory Building430000016Centrifuge Building213000017Filter & Generator Foundations271300018Pump House (4Nos)78800017Landscaping767000SUB TOTAL43979000CMECHANICAL WORKS229000001STP Electricals work11000000SUB TOTAL22900000SUB TOTAL22900000SUB TOTAL22900000SUB TOTAL22900000F ELETRICAL WORKS110000001STP Electricals work11000000F ELETRICAL (A+B+C+D+E)125579000	В	STP CIVIL WORKS	
2 Receiving Chamber, Screen Channel & Grit Chamber 2386000 3 Equalisation Tank 6780000 4 MBBR - 01 2410000 5 MBBR - 02 2410000 6 Clarifier 5738000 7 Sludge Sump 500000 8 Sludge Thickener 1230000 9 Thickened Sludge Sump 500000 10 Filter Feed Tank 1650000 11 Treated Water Tank 1650000 12 Centrate Sump 336000 13 Treated Water Channel 267000 14 Sludge Storage Yard 811000 15 Transformer Housing, Control Room & Laboratory Building 4300000 16 Centrifuge Building 2130000 17 17 Filter & Generator Foundations 2713000 18 18 Pump House (4Nos) 788000 17 19 Internal Roads, Walkways & Storm Water Drain 5748000 17 17 Landscaping 767000 22900000	1	Site Clearing, Levelling & Shifting of Materials	1632000
3 Equalisation Tank 6780000 4 MBBR - 01 2410000 5 MBBR - 02 2410000 6 Clarifier 5738000 7 Sludge Sump 500000 8 Sludge Thickener 1230000 9 Thickened Sludge Sump 500000 10 Filter Feed Tank 1650000 11 Treated Water Tank 1650000 12 Centrate Sump 336000 13 Treated Water Channel 267000 14 Sludge Storage Yard 811000 15 Transformer Housing, Control Room & Laboratory Building 4300000 16 Centrifuge Building 2130000 17 Filter & Generator Foundations 2713000 18 Pump House (4Nos) 788000 19 Internal Roads, Walkways & Storm Water Drain 5748000 17 Landscaping 767000 SUB TOTAL 22900000 SUB TOTAL 1 STP Equipments wit plant Piping 229000000	2	Receiving Chamber, Screen Channel & Grit Chamber	2386000
4 MBBR - 01 2410000 5 MBBR - 02 2410000 6 Clarifier 5738000 7 Sludge Sump 500000 8 Sludge Thickener 1230000 9 Thickened Sludge Sump 500000 10 Filter Feed Tank 1650000 11 Treated Water Tank 1650000 12 Centrate Sump 336000 13 Treated Water Channel 267000 14 Sludge Storage Yard 811000 15 Transformer Housing, Control Room & Laboratory Building 4300000 16 Centrifuge Building 2130000 17 Filter & Generator Foundations 2713000 18 Pump House (4Nos) 788000 19 Internal Roads, Walkways & Storm Water Drain 5748000 17 Landscaping 767000 SUB TOTAL 22900000 22900000 SUB TOTAL 22900000 22900000 SUB TOTAL 22900000 22900000 SUB TOTAL 22900000 22900000 SUB TOTAL 11000	3	Equalisation Tank	6780000
5 MBBR - 02 2410000 6 Clarifier 5738000 7 Sludge Sump 500000 8 Sludge Thickener 1230000 9 Thickened Sludge Sump 500000 10 Filter Feed Tank 1650000 11 Treated Water Tank 1650000 12 Centrate Sump 336000 13 Treated Water Channel 267000 14 Sludge Storage Yard 811000 15 Transformer Housing, Control Room & Laboratory Building 4300000 16 Centrifuge Building 2130000 17 Filter & Generator Foundations 2713000 18 Pump House (4Nos) 788000 19 Internal Roads, Walkways & Storm Water Drain 5748000 17 Landscaping 767000 SUB TOTAL 43979000 22900000 C MECHANICAL WORKS 1 1 STP Equipments wit plant Piping 22900000 SUB TOTAL 22900000 22900000 D ELETRICAL WORKS 110000000 1 <	4		2410000
6 Clarifier 5738000 7 Sludge Sump 500000 8 Sludge Thickener 1230000 9 Thickened Sludge Sump 500000 10 Filter Feed Tank 1650000 11 Treated Water Tank 1650000 12 Centrate Sump 336000 13 Treated Water Channel 267000 14 Sludge Storage Yard 811000 15 Transformer Housing, Control Room & Laboratory Building 4300000 16 Centrifuge Building 2130000 17 Filter & Generator Foundations 2713000 18 Pump House (4Nos) 788000 19 Internal Roads, Walkways & Storm Water Drain 5748000 17 Landscaping 767000 SUB TOTAL 43979000 22900000 C MECHANICAL WORKS 22900000 1 STP Equipments wit plant Piping 22900000 SUB TOTAL 22900000 22900000 SUB TOTAL 11000000 SUB TOTAL <	5	MBBR - 02	2410000
7 Sludge Sump 500000 8 Sludge Thickener 1230000 9 Thickened Sludge Sump 500000 10 Filter Feed Tank 1650000 11 Treated Water Tank 1650000 12 Centrate Sump 336000 13 Treated Water Channel 267000 14 Sludge Storage Yard 811000 15 Transformer Housing, Control Room & Laboratory Building 4300000 16 Centrifuge Building 2130000 17 Filter & Generator Foundations 2713000 18 Pump House (4Nos) 788000 19 Internal Roads, Walkways & Storm Water Drain 5748000 17 Landscaping 767000 SUB TOTAL 43979000 22900000 C MECHANICAL WORKS 22900000 1 STP Equipments wit plant Piping 22900000 SUB TOTAL 22900000 22900000 SUB TOTAL 11000000 5UB TOTAL 1 STP Electricals work 11000000 SUB TOTAL 11000000 5UB TOTAL 5000	6	Clarifier	5738000
8 Sludge Thickener 1230000 9 Thickened Sludge Sump 500000 10 Filter Feed Tank 1650000 11 Treated Water Tank 1650000 12 Centrate Sump 336000 13 Treated Water Channel 267000 14 Sludge Storage Yard 811000 15 Transformer Housing, Control Room & Laboratory Building 4300000 16 Centrifuge Building 2130000 17 Filter & Generator Foundations 2713000 18 Pump House (4Nos) 788000 19 Internal Roads, Walkways & Storm Water Drain 5748000 17 Landscaping 767000 SUB TOTAL 43979000 22900000 C MECHANICAL WORKS 22900000 1 STP Equipments wit plant Piping 22900000 SUB TOTAL 22900000 22900000 11 STP Electricals work 11000000 SUB TOTAL 11000000 SUB TOTAL 1 STP Electricals work <td< td=""><td>7</td><td>Sludge Sump</td><td>500000</td></td<>	7	Sludge Sump	500000
9 Thickened Sludge Sump 500000 10 Filter Feed Tank 1650000 11 Treated Water Tank 1650000 12 Centrate Sump 336000 13 Treated Water Channel 267000 14 Sludge Storage Yard 811000 15 Transformer Housing, Control Room & Laboratory Building 4300000 16 Centrifuge Building 2130000 17 Filter & Generator Foundations 2713000 18 Pump House (4Nos) 788000 19 Internal Roads, Walkways & Storm Water Drain 5748000 17 Landscaping 767000 SUB TOTAL 43979000 22900000 C MECHANICAL WORKS 22900000 1 STP Equipments wit plant Piping 22900000 D ELETRICAL WORKS 11000000 1 STP Electricals work 11000000 SUB TOTAL 11000000 500000 E FURNITURES & LABORATORY ITEMS 500000 E FURNITURES & LABORATORY ITEMS 500000	8	Sludge Thickener	1230000
10 Filter Feed Tank 1650000 11 Treated Water Tank 1650000 12 Centrate Sump 336000 13 Treated Water Channel 267000 14 Sludge Storage Yard 811000 15 Transformer Housing, Control Room & Laboratory Building 4300000 16 Centrifuge Building 2130000 17 Filter & Generator Foundations 2713000 18 Pump House (4Nos) 788000 19 Internal Roads, Walkways & Storm Water Drain 5748000 17 Landscaping 767000 SUB TOTAL 43979000 22900000 C MECHANICAL WORKS 22900000 1 STP Equipments wit plant Piping 22900000 D ELETRICAL WORKS 11000000 1 STP Electricals work 11000000 E FURNITURES & LABORATORY ITEMS 500000 E FURNITURES & LABORATORY ITEMS 500000	9	Thickened Sludge Sump	500000
11Treated Water Tank165000012Centrate Sump33600013Treated Water Channel26700014Sludge Storage Yard81100015Transformer Housing, Control Room & Laboratory Building430000016Centrifuge Building213000017Filter & Generator Foundations271300018Pump House (4Nos)78800019Internal Roads, Walkways & Storm Water Drain574800017Landscaping767000SUB TOTAL43979000CMECHANICAL WORKS229000001STP Equipments wit plant Piping22900000DELETRICAL WORKS110000001STP Electricals work11000000EFURNITURES & LABORATORY ITEMS500000TOTAL (A+B+C+D+E)125579000	10	Filter Feed Tank	1650000
12Centrate Sump33600013Treated Water Channel26700014Sludge Storage Yard81100015Transformer Housing, Control Room & Laboratory Building430000016Centrifuge Building21300017Filter & Generator Foundations271300018Pump House (4Nos)78800019Internal Roads, Walkways & Storm Water Drain574800017Landscaping767000SUB TOTAL43979000CMECHANICAL WORKS229000001STP Equipments wit plant Piping22900000SUB TOTAL22900000DELETRICAL WORKS110000001STP Electricals work11000000EFURNITURES & LABORATORY ITEMS500000TOTAL (A+B+C+D+E)125579000	11	Treated Water Tank	1650000
13Treated Water Channel26700014Sludge Storage Yard81100015Transformer Housing, Control Room & Laboratory Building430000016Centrifuge Building213000017Filter & Generator Foundations271300018Pump House (4Nos)78800019Internal Roads, Walkways & Storm Water Drain574800017Landscaping767000SUB TOTAL43979000CMECHANICAL WORKS1STP Equipments wit plant Piping22900000SUB TOTAL22900000DELETRICAL WORKS1STP Electricals work11000000SUB TOTAL11000000EFURNITURES & LABORATORY ITEMS500000TOTAL (A+B+C+D+E)125579000	12	Centrate Sump	336000
14Sludge Storage Yard81100015Transformer Housing, Control Room & Laboratory Building430000016Centrifuge Building213000017Filter & Generator Foundations271300018Pump House (4Nos)78800019Internal Roads, Walkways & Storm Water Drain574800017Landscaping767000SUB TOTAL43979000CMECHANICAL WORKS11STP Equipments wit plant Piping22900000SUB TOTAL2290000022900000DELETRICAL WORKS110000001STP Electricals work11000000EFURNITURES & LABORATORY ITEMS500000TOTAL (A+B+C+D+E)125579000	13	Treated Water Channel	267000
15Transformer Housing, Control Room & Laboratory Building43000016Centrifuge Building21300017Filter & Generator Foundations271300018Pump House (4Nos)78800019Internal Roads, Walkways & Storm Water Drain574800017Landscaping767000SUB TOTAL43979000CMECHANICAL WORKS229000001STP Equipments wit plant Piping22900000SUB TOTAL2290000022900000DELETRICAL WORKS110000001STP Electricals work11000000EFURNITURES & LABORATORY ITEMS500000TOTAL (A+B+C+D+E)125579000	14	Sludge Storage Yard	811000
16 Centrifuge Building 2130000 17 Filter & Generator Foundations 2713000 18 Pump House (4Nos) 788000 19 Internal Roads, Walkways & Storm Water Drain 5748000 17 Landscaping 767000 SUB TOTAL 43979000 C MECHANICAL WORKS 1 STP Equipments wit plant Piping 22900000 SUB TOTAL 22900000 D ELETRICAL WORKS 11000000 1 STP Electricals work 11000000 SUB TOTAL 22900000 111000000 D ELETRICAL WORKS 11000000 F FURNITURES & LABORATORY ITEMS 500000 TOTAL (A+B+C+D+E) 125579000	15	Transformer Housing, Control Room & Laboratory Building	4300000
17Filter & Generator Foundations271300018Pump House (4Nos)78800019Internal Roads, Walkways & Storm Water Drain574800017Landscaping767000SUB TOTAL43979000CMECHANICAL WORKS229000001STP Equipments wit plant Piping22900000SUB TOTAL22900000DELETRICAL WORKS110000001STP Electricals work11000000EFURNITURES & LABORATORY ITEMS500000TOTAL (A+B+C+D+E)125579000	16	Centrifuge Building	2130000
18 Pump House (4Nos) 788000 19 Internal Roads, Walkways & Storm Water Drain 5748000 17 Landscaping 767000 SUB TOTAL 43979000 C MECHANICAL WORKS 1 STP Equipments wit plant Piping 22900000 SUB TOTAL 22900000 D ELETRICAL WORKS 11000000 1 STP Electricals work 11000000 E FURNITURES & LABORATORY ITEMS 500000 TOTAL (A+B+C+D+E) 125579000	17	Filter & Generator Foundations	2713000
19Internal Roads, Walkways & Storm Water Drain574800017Landscaping76700010SUB TOTAL4397900011STP Equipments wit plant Piping2290000011STP Equipments wit plant Piping2290000011STP Electricals work1100000011STP Electricals work1100000011SUB TOTAL1100000011SUB TOTAL50000011SUB TOTAL1100000011SUB TOTAL1100000011STP Electricals work1100000011SUB TOTAL1100000011SUB TOTAL1100000011SUB TOTAL1100000011SUB TOTAL1100000011SUB TOTAL (A+B+C+D+E)125579000	18	Pump House (4Nos)	788000
17 Landscaping 767000 SUB TOTAL 43979000 C MECHANICAL WORKS 1 STP Equipments wit plant Piping 22900000 SUB TOTAL 22900000 D ELETRICAL WORKS 22900000 1 STP Electricals work 11000000 E FURNITURES & LABORATORY ITEMS 500000 TOTAL (A+B+C+D+E) 125579000	19	Internal Roads, Walkways & Storm Water Drain	5748000
SUB TOTAL43979000CMECHANICAL WORKS1STP Equipments wit plant Piping22900000SUB TOTAL22900000DELETRICAL WORKS229000001STP Electricals work11000000SUB TOTAL11000000EFURNITURES & LABORATORY ITEMS500000TOTAL (A+B+C+D+E)125579000	17	Landscaping	767000
CMECHANICAL WORKS1STP Equipments wit plant Piping22900000SUB TOTAL22900000DELETRICAL WORKS10000001STP Electricals work11000000SUB TOTAL11000000EFURNITURES & LABORATORY ITEMS500000TOTAL (A+B+C+D+E)125579000		SUB TOTAL	43979000
1STP Equipments wit plant Piping22900000SUB TOTAL22900000DELETRICAL WORKS1STP Electricals work11000000SUB TOTAL11000000EFURNITURES & LABORATORY ITEMS500000TOTAL (A+B+C+D+E)125579000	С	MECHANICAL WORKS	
SUB TOTAL 2290000 D ELETRICAL WORKS 100000 1 STP Electricals work 1100000 SUB TOTAL 11000000 E FURNITURES & LABORATORY ITEMS 500000 TOTAL (A+B+C+D+E) 125579000	1	STP Equipments wit plant Piping	22900000
D ELETRICAL WORKS 1 STP Electricals work 11000000 SUB TOTAL 11000000 E FURNITURES & LABORATORY ITEMS 500000 TOTAL (A+B+C+D+E) 125579000		SUB TOTAL	22900000
1 STP Electricals work 1100000 SUB TOTAL 11000000 E FURNITURES & LABORATORY ITEMS 500000 TOTAL (A+B+C+D+E) 125579000	D	ELETRICAL WORKS	
SUB TOTAL 1100000 E FURNITURES & LABORATORY ITEMS 500000 TOTAL (A+B+C+D+E) 125579000	1	STP Electricals work	11000000
E FURNITURES & LABORATORY ITEMS 500000 TOTAL (A+B+C+D+E) 125579000		SUB TOTAL	11000000
TOTAL (A+B+C+D+E) 125579000	Ε	FURNITURES & LABORATORY ITEMS	500000
		TOTAL (A+B+C+D+E)	125579000

Chapter 12

OPERATION & MAINTENANCE TENTATIVE COST

Table 12.1:Operation and Maintenance Estimate

KOCHI Operation and Maintenance Es Sl. No. Description A. Power Charges Rs. 5 for A. Power charges @ Rs. 5 for Image: Colspan="2">KWh @ 121.5KWH working at 10hrs a day. Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Colspan="2">Staffs for Operation B. Staffs for Operation 3 1 B. Staffs for Operation 3 1 B. Staffs for Operation 3 1 C. General Duty Fitter 3 1 C. Fuel For Generator (Working Half load 29litres @ 60rs/litr 1 1 A. Sub Total 1 1 1	PROCESS DESIGN OF 5MLD SEWAGE TREATMENT PLANT FOR KWA,					
Operation and Maintenance Es Sl. No. Description A. Power Charges A. Power charges @ Rs. 5 for KWh @ 121.5KWH working at a. Power charges @ Rs. 5 for KWh @ 121.5KWH working at at 10hrs a day. Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">C. Fuel For Operation B. Staffs for Operation 3 1 b. Assistant Operator 3 2 C. General Duty Fitter 3 2 C. Fuel For Generator (Working 1 1 Half load 29litres @ 60rs/litr approximately 10hrs a month) 1 1	KOCHI Operation and Maintenance Estimate					
Sl. No. Description A. Power Charges a. Power charges @ Rs. 5 for KWh @ 121.5KWH working Image: Constraint of the second of the sec						
A. Power Charges a. Power charges @ Rs. 5 for KWh @ 121.5KWH working at 10hrs a day. Total Image: Constraint of the sectual usage of pla rates * The rate may fluctuate according to the actual usage of pla rates B. Staffs for Operation a. Operators 3 b. Assistant Operator 3 c. General Duty Fitter 3 C. Fuel For Generator (Working Half load 29litres @ 60rs/litr annrovimately 10hrs a month)		Expenditure (Rs)				
a. Power charges @ Rs. 5 for KWh @ 121.5KWH working at 10hrs a day. Total Image: Constraint of the second of the seco						
KWh @ 121.5KWH working at 10hrs a day.KWh @ 121.5KWH working at 10hrs a day.TotalImage: Constraint of the actual usage of plate rates* The rate may fluctuate according to the actual usage of plate ratesB.Staffs for Operationa.Operators33b.Assistant Operator33c.General Duty Fitter33C.Fuel For Generator (Working Half load 29litres @ 60rs/litr approximately 10hrs a month)		1,82,250				
at 10hrs a day.Image: Constraint of the second						
TotalImage: Image of the second s						
 * The rate may fluctuate according to the actual usage of pla rates B. Staffs for Operation a. Operators 3 b. Assistant Operator 3 c. General Duty Fitter Sub Total C. Fuel For Generator (Working Half load 29litres @ 60rs/litr approximately 10hrs a month) 		1,82,250				
rates B. Staffs for Operation a. Operators 3 b. Assistant Operator 3 c. General Duty Fitter 3 Sub Total Image: Color of the structure Sub Total C. Fuel For Generator (Working Half load 29litres @ 60rs/litr approximately 10hrs a month) Image: Color of the structure	nt and v	ariation in KSEB				
B. Staffs for Operation a. Operators 3 b. Assistant Operator 3 c. General Duty Fitter 3 Sub Total 1 C. Fuel For Generator (Working Half load 29litres @ 60rs/litr approximately 10hrs a month)						
a. Operators 3 b. Assistant Operator 3 c. General Duty Fitter 3 Sub Total 3 C. Fuel For Generator (Working Half load 29litres @ 60rs/litr approximately 10hrs a month)						
b. Assistant Operator 3 c. General Duty Fitter 3 Sub Total 3 C. Fuel For Generator (Working Half load 29litres @ 60rs/litr approximately 10hrs a month)	20,000	60,000				
c. General Duty Fitter 3 Sub Total 3 C. Fuel For Generator (Working Half load 29litres @ 60rs/litr approximately 10hrs a month)	15,000	45,000				
C. Fuel For Generator (Working Half load 29litres @ 60rs/litr approximately 10hrs a month)	20,000	60,000				
C. Fuel For Generator (Working Half load 29litres @ 60rs/litr		1,65,000				
C. Fuel For Generator (Working Half load 29litres @ 60rs/litr approximately 10hrs a month)						
Half load 29litres @ 60rs/litr		17,400				
approximately 10 hrs a month)						
approximatory roms a monthly						
		_				

77

6.	Grand Total for	5years O&M	28,720,000
5.	Fifth Year		6888591
4.	Fourth Year		6262355
3.	Third Year		5693050
2.	Second Year		5175500
1.	First Year		47,05,000
4	5 Years Annual O&M Cost consid	lering 10% annual increase	each year
	Unit Cost of Treatme	nt per Kilo Liter	2.58
	Treatment Cos	12,890	
	Annual Operation & M	aintenance Charge	47,05,000
	Grand Total Per Month		3,92,050
	Sub Total		27,400
	Replacements		
с.	Spares, Lubricants &		10,000
0.	\widehat{a} Rs.190/kg)		11,400
h	Rs.20/kg		11 400
a.	Gas Chlorine (300kg @		6,000
	spare parts & lubricants		
D.	Cost of miscellaneous		
1.	$C \rightarrow C$ \cdot 11		

Chapter 11 CONCLUSION

The estimated cost for the new proposed 5MLD STP including an Office Building worked out to be **Rs. 12,55,79,000 (Rupees Twelve Crore Fifty Five Lakhs Seventy Nine Thousand Only).** Annual maintenance cost worked out to be **Rs. 47,05,000 (Rupees Forty Seven Lakhs Five Thousand Only)**. It is proposed that the STP Contractor shall maintain the same for a period of 5years. The overall cost of the proposal is worked out to be **Rs 2,87,20,000 (Two Crore Eighty Seven Lakhs Twenty Thousand Only)**

The proposed project will facilitate the mitigation of the present water pollution at least partially. On commissioning the scheme can showcase then necessity for STPs in cities and remove the existing perception among the general public against STPs. Cleaner environment will ultimately improve quality of the life of the citizen.