ENERGY AUDIT AT **"KERALA WATER AUTHORITY** PH HEAD WORKS- ALUVA"

Energy Management Centre – Kerala Dept of Power, Govt of Kerala.State Designated Agency Sreekrishna Nagar, Sreekariyam P.O., Thiruvananthapuram – 695 017 Ph: 0471 - 2594922, 2594924, Fax: 0471 - 2594923 e-mail: emck@keralaenergy.gov.in

Energy Audit Report Year: 2020-21

ENERGY AUDIT REPORT KERALA WATER AUTHORITY PUMPING STATION

ALUVA

Energy Audit Report KERALA WATER AUTHORITY PUMPING STATION-ALUVA Report No: EA 581 & 582 2020-October

Energy Audit Team:

Suresh Babu B V, Accredited Energy Auditor, AEA 33 B. Zachariah, Chief Technical Consultant Abin Baby, Project Engineer Mahesh Ramachandran E, Project Engineer Mohammed Aneez, Project Engineer

Accredited Energy Auditor, AEA 33 Bureau of Energy Efficiency Government of India

Empaneled Energy Auditor, EMCEEA-0211F, Energy Management Centre Government of Kerala.

Acknowledgment

We were privileged to work together with the administration and staff of Kerala Water Authority pumping station, Aluva for their timely help extended to complete the study and bringing out this report on Energy Audit.

We are happy to acknowledge the help extended by Sri. Anil K Augustine Assistant Executive Engineer for their quality interactions and advices to make this audit complete. We thank our consultants, engineers and backup staff for their dedication to bring this report.

Thank you.

B V Suresh Babu Accredited Energy Auditor AEA 33, Bureau of Energy Efficiency For OTTOTRACTIONS

Contents

	Acknowledgement	
	Certification	
	Executive Summary	
1.	Introduction	1-4
2.	Process and Functional Description	5-7
3.	Energy and Utility system Description	8-9
4.	Detailed Process flow diagram and Energy& Material balance	10-16
5.	Performance evaluation of major equipment and systems	17-65
6.	Energy Efficiency in Utility and Process Systems	66-67
7.	Evaluation of Energy Management System	68-70
8.	Energy Conservation Options & Recommendations	71-101
Tech	nical Supplements	
9.	Technical Supplement 1, Backup data& Worksheets	102-108
10.	Technical Supplement 2, Thermography Report	109-111
11.	Technical Supplement 3, Power Quality Analysis	112-126
12.	Notes	

Certification

This is to certify that

The data collection has been carried out diligently and truthfully;

All data monitoring devices are in good working condition and have been calibrated or certified by approved agencies authorised and no tampering of such devices has occurred;

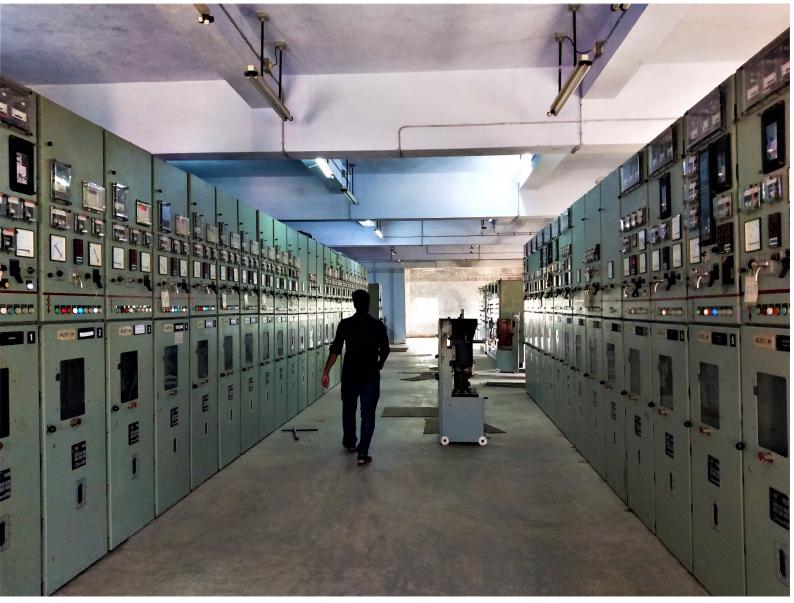
All reasonable professional skill, care and diligence had been taken in preparing the energy audit report and the contents thereof are a true representation of the facts;

Adequate training provided to personnel involved in daily operations after implementation of recommendations; and

The energy audit has been carried out in accordance with the Bureau of Energy Efficiency (Manner and Intervals of Time for the Conduct of Energy Audit) Regulations, 2010.

> SURESH BABU B V ACCREDITED ENERGY AUDITOR (AEA 33)

	OTTOTRACTIONS- ENERGY AUDIT					
	Executive Summary					
	Consolidated Cost Benefit Analy				ement Proje	cts
	KWA PUN	IPING STATIC		A		
Sl	Projects	Investment	Cost saving	SPB	Energy	saved
No		(Lakhs Rs)	(Rs)/Yr	Months	kWh/Yr	toE/Yr
1	Energy Saving in Lighting by replacing existing 173 No's T12 Lamps to 18W LED Tube	0.61	1.65	4.40	27506	2.37
2	Energy saving by replacing the existing 50HP standard efficiency motors with energy efficient IE3 (or higher rated) motor in Tanker pump set	10.91	2.20	59.51	36653	3.15
3	Energy saving by replacing the existing 50HP standard efficiency motors with energy efficient IE3 (or higher rated) motor in WW Pump (Plant 3)	11.79	2.38	59.51	39636	3.41
4	Energy saving by replacing the existing 20HP standard efficiency motors with energy efficient IE3 (or higher rated) motor in WW Pump set (Plant 4)	4.26	0.86	59.51	14320	1.23
5	Energy saving by replacing the existing 20HP standard efficiency motors with energy efficient IE3 (or higher rated) motor in Blowers	8.32	1.68	59.51	27958	2.40
6	Energy Efficiency in Existing Pumping system by replacing inefficient motor (RW1-HT1)	41.00	23.28	21.13	388068	33.37
7	Energy Efficiency in Existing Pumping system by replacing inefficient motor (RW1-HT3)	30.75	29.49	12.51	491436	42.26
8	Energy Efficiency in Existing Pumping system by replacing inefficient motor (RW2-LT1)	26.65	10.14	31.53	169068	14.54


9	Energy Efficiency in Existing Pumping system by replacing inefficient motor (RW2-LT2)	22.55	13.61	19.88	226884	19.51
10	Energy Efficiency in Existing Pumping system by replacing inefficient motor (RW2-LT4)	22.55	24.34	11.12	405588	34.88
11	Energy Efficiency in Existing Pumping system by replacing inefficient motor (RW3-HT1)	36.90	35.06	12.63	584292	50.25
12	Energy Efficiency in Existing Pumping system by replacing inefficient motor (RW3-HT2)	36.90	27.91	15.87	465156	40.00
13	Energy Efficiency in Existing Pumping system by replacing inefficient motor (RW3-HT3)	36.90	41.26	10.73	687660	59.14
14	Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW1-HT1)	64.58	71.64	10.82	1193988	102.68
15	Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW1-HT2)	64.58	70.33	11.02	1172088	100.80
16	Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW1-HT6)	18.45	36.74	6.03	612324	52.66
17	Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW2-HT1)	64.58	39.74	19.50	662256	56.95
18	Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW2-HT3)	64.58	56.50	13.71	941700	80.99
19	Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW3-HT3)	64.58	56.50	13.71	941700	80.99
20	Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW3-HT4)	51.25	12.46	49.37	207612	17.85
21	Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW3-HT4)	51.25	17.77	34.62	296088	25.46

				1		
22	Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW3-HT5)	51.25	17.98	34.21	299592	25.76
23	Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW3-LT1)	11.28	29.91	4.52	498444	42.87
24	Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW3-LT5)	15.38	4.94	37.34	82344	7.08
25	Energy Saving by arresting leakages in flanges and other joints of the line.					
26	Energy saving by reducing heat loss from terminations points & cables of electrical systems (as per TI report)					
27	Energy saving by converting existing LT motors in PWPH No 3 to HT supply to reduce the downtime and maintenance					
28	Improve the power factor to unity will save energy cost by getting PF incentives.					
29	Installation of Solar Power Plants (50kWe) on the rooftop and other vacant area to cater lighting loads.	37.5	3.83	117	63875	
		849.5	631.83	26	10536236	901

1 Introduction

A detailed energy audit has been carried out at KERALA WATER AUTHORITY PUMPING STATION, Aluva in September 2020. Energy Management Centre – Kerala (EMC) has entrusted OTTOTRACTIONS an Accredited Energy Auditor of Bureau of Energy Efficiency and Empaneled Energy Auditor of Energy Management Centre, Government of Kerala to conduct this audit for EMC. The energy audit has identified energy conservation opportunities and recommended projects to improve energy efficiency of the facility.

About EMC-Kerala

Kerala Government has become the first State Government in India to establish an Energy Management Centre (EMC) at State level, aiming primarily to remould and instrumentalise energy sector as a catalyst in promoting a development process which is econo-ecologically sustainable. With a view to making energy sector achieve such a lead and catalytic role, EMC has evolved a novel and management approach institutional comprehensive energy and philosophy encompassing management of energy technology systems - both conventional and non-conventional, energy conservation in all sectors of the economy, energy resource management, rural and urban energy systems, energy education and training, energy generation and conservation based employment and poverty alleviation programmes.

India, one of the most affected countries in terms of energy shortage and increasing energy price became one such country in the world to adopt energy management measures at the earliest in all sectors of the economy on a priority basis, including popularising and promoting renewable energy technology and resources.

When liberalization and globalization of economy take effect, energy management aimed at enhancing total energy efficiency in all sectors of the economy becomes

a major factor in determining the comprehensive competitiveness of the economy. Giving due consideration to this energy-economy interaction process/scenario, the Government of Kerala took leadership initiatives for establishing a multi-disciplinary Energy Management Centre under the Department of Power.

This energy audit report complies with the clauses in *Energy Conservation Act, 2001* on mandatory energy audit (**Form 4** [refer regulation 6(2)] guidelines for preparation of energy audit report) and complies with the G.O (Rt) No.2/2011/PD dated 01.01.2011 issued by Government of Kerala on mandatory energy audit.

1.1. General plant/establishment details and descriptions

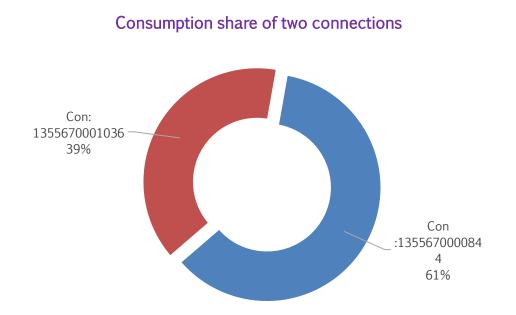
Kerala water authority was established in first April 1984 under Kerala water and waste water ordinance. The Aluva PH Head works subdivision with consumer numbers 10/1010 (1355670000844) & 23/2357 (1355670001036) have four plants. Plant -1 established in the year 1965, Plant – 2 in 1977, Plant-3 in 1992 and plant-4 in 2002 at the head works Aluva. It has an installed capacity of 225 MLD (million liters per day) with 365 days working for all four plants together. Now plant is operating in its optimum capacity. The capacity utilisation is near 100%.

Base line Data (Electrical System)					
Code	EA 581	EA 582			
Facility	KERALA WATER AUTHORITY,	KERALA WATER AUTHORITY,			
Tachity	ALUVA	ALUVA			
Provider	KSEB Ltd	KSEB Ltd			
Consumer No	1355670001036	1355670000844			
Contract Demand (kVA)	1800	3418			
Tariff	HT1(A) Industrial	HT1(A) Industrial			
Energy Charge Rs/ kWh Z1	5.5	5.5			
Energy Charge Rs/ kWh Z2	8.25	8.25			
Energy Charge Rs/ kWh Z3	4.125	4.125			
Demand Charge Rs/ kVA	300	300			
Excess Demand Rs/kVA	150	150			
Energy Bill Analysis interval	2018-19	2018-19			

1.2. Energy audit team

The Energy Audit team is listed below. Besides this list various domine experts also participated in this project.

- 1. Suresh Babu B V, Accredited Energy Auditor, AEA 33
- 2. B. Zachariah, Chief Technical Consultant
- 3. Abhijith M R, Certified Energy Auditor
- 4. Abin Baby, Project Engineer
- 5. Mahesh Ramachandran E, Project Engineer
- 6. Mohammed Aneez, Project Engineer

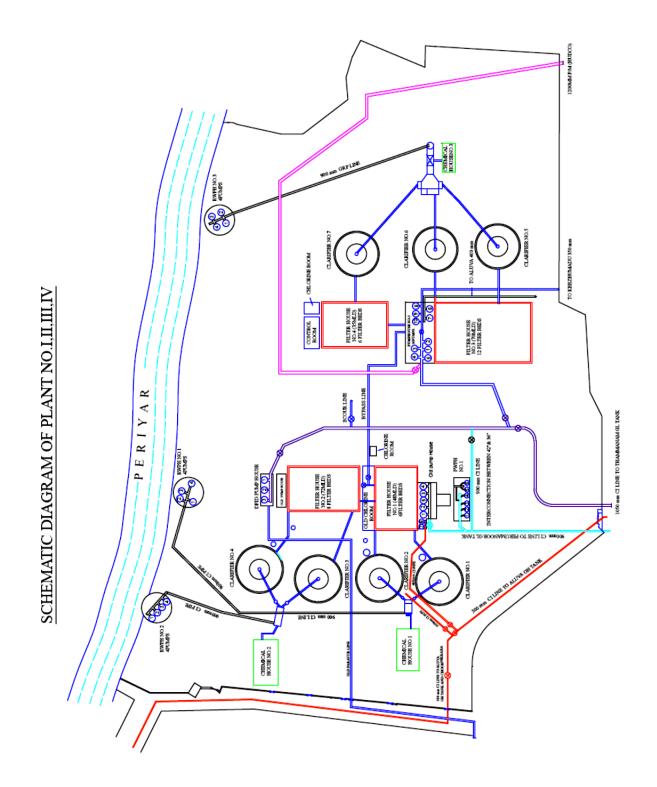

1.3. Component of production cost

- 1. Energy (Electricity)
- 2. Manpower (Permanent & Contract)
- 3. Consumables
- 4. Overhead & others

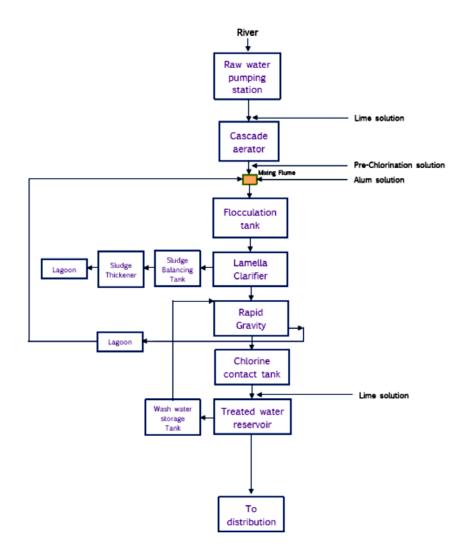
1.4. Major energy use areas

Electricity from KSEB 100% holds the share in the total energy consumed in this facility.

Energy Audit Report: 2020 KWA Head Works, Aluva ⁵



Production process description



The Aluva head works having four plants: Plant -1 established in the year 1965 having 48 MLD, Plant - 2 in 1977 having 72 MLD, Plant-3 in 1992 having 70 MLD and plant-4 in 2002 having 35 MLD. The raw water intake is from Periyar through three intake wells. First commissioned in 1965, this plant has been progressively modified over the years with its capacity being gradually increased from an initial 48,000m³/day to now delivering approximately 290,000m³ of treated clear water into the EMWSS and Aluva water supply system daily. Taking water from the Periyar River, raw water pumps deliver water to the WTP located inside the campus. Here the water is treated in the following processes:

7

S Energy and utility system description

3.1. List of utilities

Electricity is only fuel used in the facility.

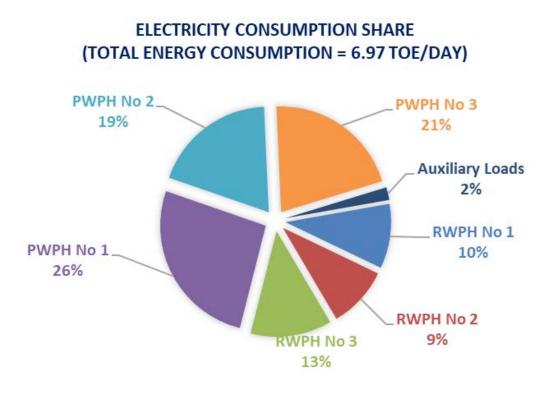
3.2 Brief description of each utility

3.2.1 Electricity

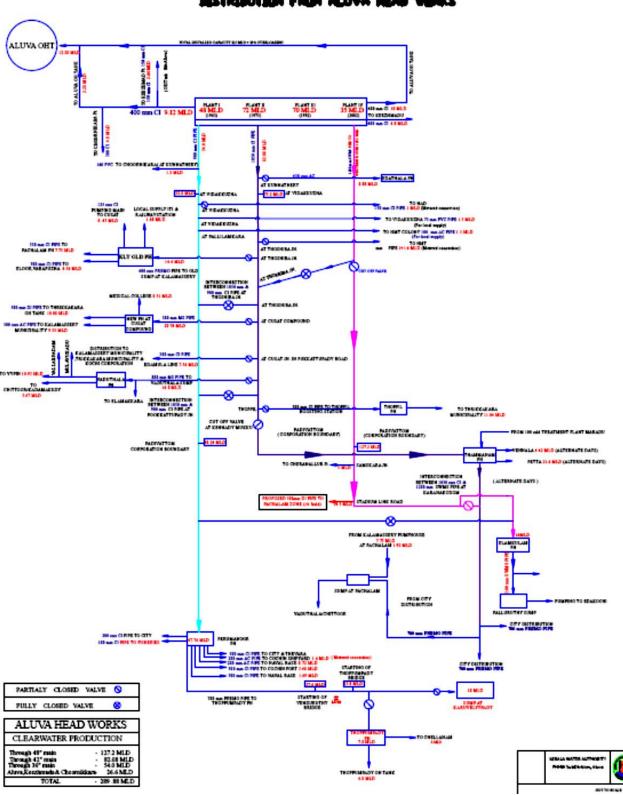
The facility is a consumer of Kerala State Electricity Board (KSEB) under HT – I (A) Industrial Tariff category at 11 kV. The facility having two HT connections with contract demand of 1800 kVA and 3418 kVA. The details of transformer installed in the facility are given below.

Details of Transformers					
Sl.No	Make	Year of manufacturing	Rating (kVA)	Voltage (kV)	
1	ITL Co	1977	1000	0.440	
2	ITL Co	1977	1000	0.440	
3	ITL Co	1977	1000	0.440	
4	ITL Co	1977	1000	0.440	
5	KEL Co	1967	500	0.440	
6	ITL Co	1963	500	0.440	
7	KEL Co	1987	500	0.440	
8	ITL Co	1992	1500	3.3	
9	ITL Co	1992	1500	3.3	
10	ITL Co	1992	1500	3.3	
11	ITL Co	2008	1500	3.3	
12	ITL Co	1992	500	0.440	
13	ITL Co	1992	500	0.440	
14	TELK	2015	6300	3.3	
15	TELK	2015	6300	3.3	

The power factor is being maintained as .95 in consumer number 1355670000844 and 0.97 in consumer number 1355670001036 of this facility. The electrical load study and power quality analysis has been conducted and the results and reports are given in the "Technical Supplement" of this report.

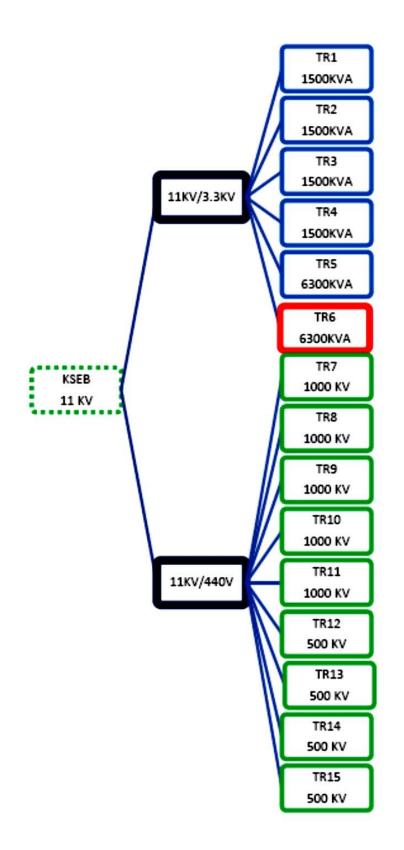


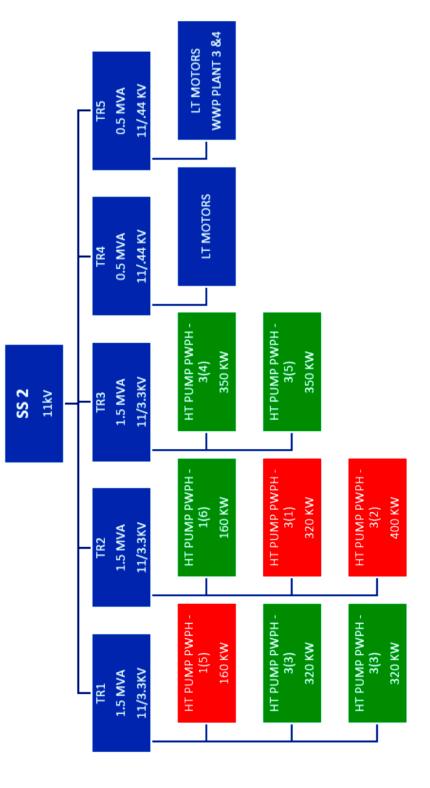
Detailed process flow diagram and energy and material balance



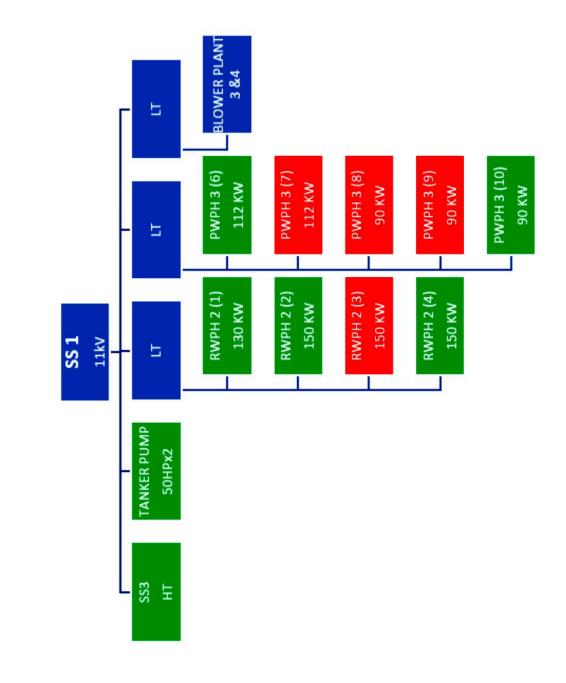
The energy balance of this facility is given above. The auxiliary loads caters 2% of the total load

Plant Operation

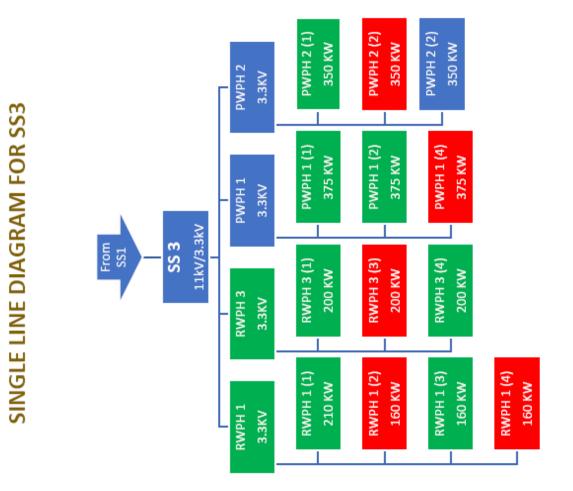

The Pumping Station has 15 transformers, out of 15, 5 numbers are 11kV/3.3kV HT transformers and 9 numbers are 11kV / 440 V LT transformers. One transformer is installed with 11kV/3.3kV but not commissioned yet. There are three substations SS1, SS2 and SS3. There are two KSEB connections as detailed above which fed to this substation. SS1 is operating for LT motors and ancillary loads. SS2 and SS3 (in which SS3 is tapped form SS1) is used to operate HT motors. The detailed SLD of substations and process are given in this section.



KERALA WATER AUTHORITY



SINGLE LINE DIAGRAM FOR SS2


Energy Audit Report: 2020 KWA Aluva

SINGLE LINE DIAGRAM FOR SS1

Energy Audit Report: 2020 KWA Aluva

Performance evaluation of major utilities and process equipment's/systems.

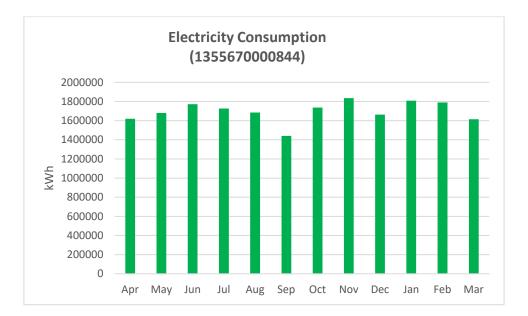
Energy Audit Report: 2020 17 KWA Aluva

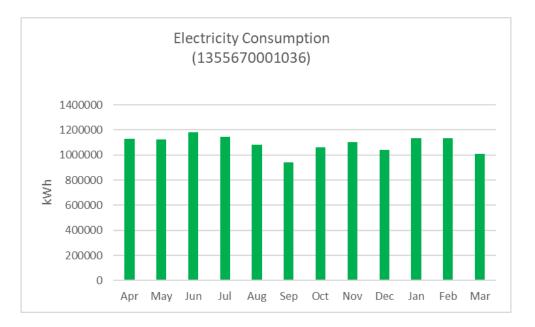
5.1. List of equipment and process where performance testing was done.

- Electrical System
- Pumps
- Lighting System
- Renewable Energy

5.2. Results of performance testing

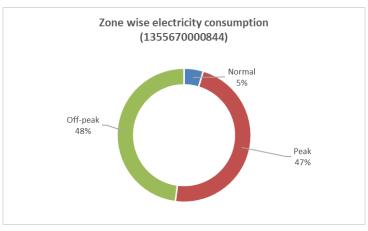
5.2.1. Electrical System

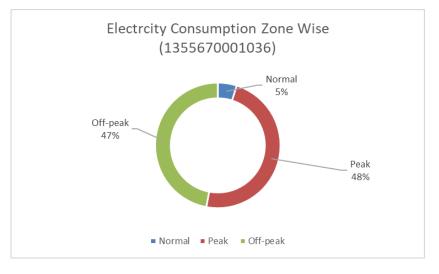

The average unit cost of electricity is **6** Rs/kWh. This is taken as the basis for the financial analysis of electrical energy efficiency projects. The information on average energy consumption is taken from the historical electricity bill analysis. The electricity is fed from centralized substations. The Maximum demand observed during electricity bill analysis was 2994 kVA and 1887 kVA for both connections respectively. 3.3 kVA consumption is 92% and LT motor/light load consumption is 8 %.


Electricity Consumption

The Electricity consumption details for the financial year 2018-19 is plotted below. The Total consumption was found to be 334.52 Lakhs Units in the year 18-19.

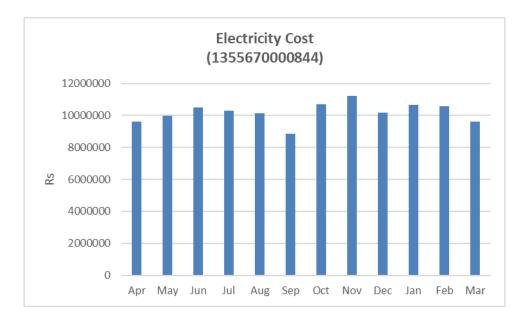
	Consume	Total	
Month	1355670000844	1355670001036	Total
	kWh	kWh	kWh
Apr	1619080	1127040	2746120
May	1679700	1126000	2805700
Jun	1772760	1183320	2956080
Jul	1727200	1142880	2870080
Aug	1685000	1081920	2766920
Sep	1441160	939040	2380200
Oct	1737640	1062400	2800040
Nov	1835560	1101400	2936960
Dec	1663680	1038560	2702240
Jan	1808640	1134800	2943440
Feb	1789960	1131800	2921760
Mar	1615200	1007560	2622760
Total	20375580	13076720	33452300




The details of water handled by the plant is given in the technical supplement of this report.

The Zone wise Energy Consumption Profile is shown below ,which shows 38% of total energy consumption in a day is at normal hours, 30% at peak hours and 32% at non peak hours.

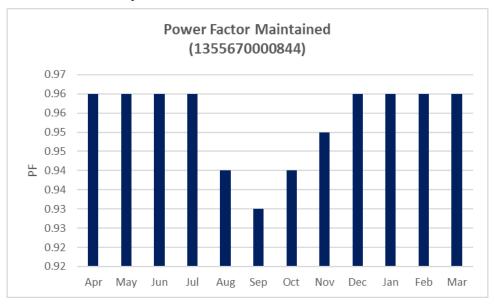
Zone	kWh	
Normal		2638
Peak		26915
Off-peak		27170

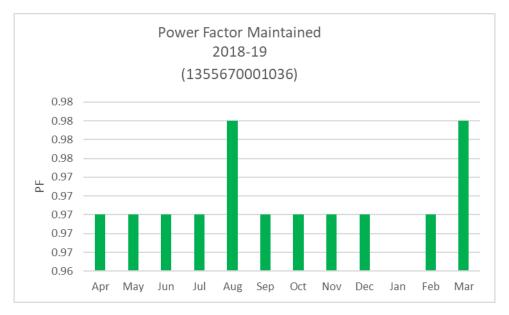



Zone	kWh
Normal	1887
Peak	18518
Off-peak	18128

The peak load consumption can be reduced by curtailing some non essential loads like backwash, cleaning etc.

The electricity cost profile for the year 2018-19 is given below.





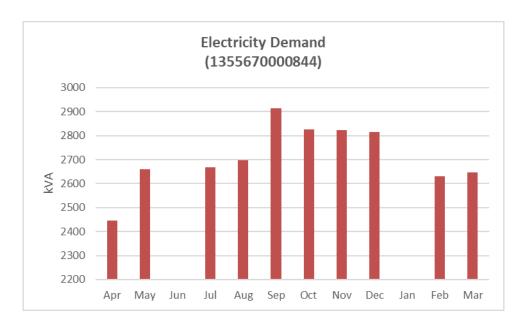
Power Factor

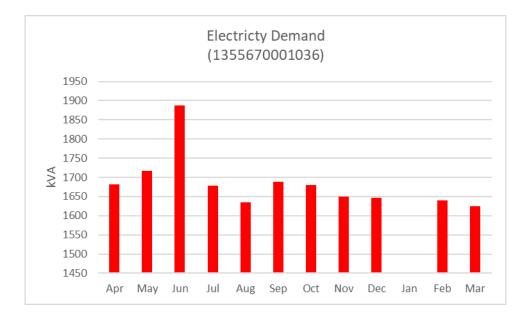
The average power factor observed is 0.93 which is very low. It is strongly recommended to add capacitors to improve power factor to unity. The power factor variation for the financial year 2018-19 is shown below.

During load study it is observed that the power factor average is 0.93(see technical supplement)

Capacitors

	Capacitor Requirment							
Sl.No	Location	Motors	HP	Make	KW (Rated)	kW (Measured)	PF	Required kVAR
1	RWPH No.1	HT Motor No 1	282	KBL	210	163	0.99	15
2	RWPH NO.1	HT Motor No 3	215	KBL	160	171	0.99	14
3		Pump set No 1	175	KBL	131	106	0.88	56
4	RWPH No.2	Pump set No 2	200	Johnston oil lub	149	111	0.77	91
5	-	Pump set No 4	200	Johnston oil lub	149	102	0.59	137
6		HT Motor No 1	268	KBL	200	111	0.64	133
7	RWPH No.3	HT Motor No 2	268	KBL	200	125	0.63	149
8		HT Motor No 3	268	KBL	200	184	0.95	55
9		HT Motor No 1	503	KBL	375	378	0.95	110
10	PWPH No.1	HT Motor No 2	503	KBL	375	370	0.95	113
11		HT Motor No 6 M-2	215		160	142	0.98	22
12	PWPH No.2	HT Motor No 1	469	KBL	350	331	0.99	46
13	T WITT NO.2	HT Motor No 3	469	KBL	350	310	0.8	230
14		HT Motor No 3	429	KBL	320	200	0.65	226
15		HT Motor No 4	469	KBL	350	200	0.65	225
16	PWPH No3	HT Motor No 5	469	KBL	350	202	0.65	231
17]	LT Motor 1 (to Kizhumad)	150	KBL	112	107	0.98	17
18		LT Motor 5 (to aluva)	120		90	83	0.85	50


The performance study of Capacitor is given below


1920 kVAr is the requirement to improve the power factor to near unit at the motor side.

Demand Control

The facility has a contract demand of 2994 kVA and 1887 kVA. As mentioned above the present average power factor of the plant is 0.93. The electricity demand variation for the financial year 2018-19 is shown below.

The load curve of mains electrical load study of Mains is given below. Demand control can be done by improving power factor to unity.

5.2.2. Pumps

The list of pumps is given below. The detailed specification of pumps are given below. The pump details like Q, H, efficiency and make are given in the detailed performance analysis of each pumps given in the respective tables.

		List of Pumps			
Sl.No	Location	Motor Code	HP	MLD	Make
1		HT Motor No 1	282		KBL
2	RWPH No.1	HT Motor No 2	215		KBL
3	KWFH NO.1	HT Motor No 3	215		KBL
4]	HT Motor No 4	215		KBL
5		Pump set No 1	175	38	KBL
6	RWPH No.2	Pump set No 2	200	40	Johnston oil lub
7		Pump set No 3	200	40	Johnston oil lub
8]	Pump set No 4	200	40	Johnston oil lub
9		HT Motor No 1	268	45	KBL
10	1	HT Motor No 2	268	45	KBL
11	RWPH No.3	HT Motor No 3	268	45	KBL
12	1	HT Motor No 4	268	45	KBL
13		HT Motor No 1	502.68	35	KBL
14	-PWPH No.1	HT Motor No 2	502.68	35	KBL
15		HT Motor No 3	502.68	35	KBL
16		HT Motor No 4	502.68	35	KBL
17		HT Motor No 5 M-1	215		
18	1	HT Motor No 6 M-2	215		
19		HT Motor No 1	469	35	KBL
20	PWPH No.2	HT Motor No 2	469	35	KBL
21	1	HT Motor No 3	469	35	KBL
22		HT Motor No 1	429		KBL
23	1	HT Motor No 2	536		Marathon
24	1	HT Motor No 3	429		KBL
25	1	HT Motor No 4	469		KBL
26		HT Motor No 5	469		KBL
27	PWPH No 3	LT Motor 1 (to Kizhumad)	150	8.5	KBL
28	1	LT Motor 2 (to Kizhumad)	150	8.5	KBL
29	1	LT Motor 3 (to Kizhumad)	120	8.5	KBL
30	1	LT Motor 4 (to aluva)	120	8	
31	1	LT Motor 5 (to aluva)	120	8	
32	T	Pump set No 1	50	9.5	KBL
33	Tanker pump set	Pump set No 2	50	9.5	Luby
34		Pump set No 1	50	9.5	Luby
35	WW pump sets in plant No 3	Pump set No 2	50	9.5	Luby
36		Pump set No 1	20	3.5	Remi
37	WW pump sets in plant No 4	Pump set No 2	20	3.5	Remi

	Performance Evaluation of Pumps						
	Raw Water Pump House 1 - HT Pump 1						
Raw Water Pump House 1Sl NoDescription				Unit	- Parameters		
		1	Unit code	K۱	VA ALUVA		
	al	2	Pump ID	R	WPH 1 (1)		
	General		Pump Application	R	aw Water		
	Gel	4	Water Quality		Raw		
		5	Total head developed by pump	m	22		
		6	Rated load of the motor	kW	210		
	ş	7	Measured load of the motor	kW	163		
	Motors	8	Efficiency of standard motor	%	84.3		
	Ă	9	Type of Motor		SRIM		
si		10	Motor power	kW	210.00		
eta		11	Make		KBL		
Design Details		12	HP		282		
sig		13	Efficiency	%	87		
ă		14	Combined efficiency of the		73.341		
	Pumps	14	system (rated)		75.541		
	Pur	15	Combined efficiency of the		59.185		
		13	system (Actual)		55.105		
		16	Volt	kV	3.202		
			Amps	А	70.6		
			rpm	rpm	1800		
	נים גים		Material		CI		
	Pipe Line		Size	mm	900.00		
		21	Length	m	NA		
		22	Water Pumping Details of	mld	35.00		
			station				
			Head	m	22		
		24	Flow	m ³ /s	0.447		
		25	Density of water	kg/m ³	1000		
ails		26	Gravitational Constant	m/s ²	9.81		
Operating Details	Ļ	27	Hydraulic Power	kW	96.47		
2	Output	28	Type of Flow Control		Throttling		
atir-	no	20	Mechanism		mouning		
ber		29	Discharge throttle valve position	%	100		
0		29	% open	/0	100		
		30	Flow Control Frequency		NILL		
			Working hours per day	Hrs	24		
			% loading of pump on flow	%	110.35		
			% loading of pump on head	%	81.48		
		34	% loading of motor	%	77.62		

Performance Evaluation of Pumps								
	Raw Water Pump House 1 - HT Pump 3							
	Sl No		Description	Unit	Parameters			
			Unit code	KV	VA ALUVA			
	al	2	Pump ID	R	WPH 1 (3)			
	General		Pump Application	R	aw Water			
	Ge	4	Water Quality		Raw			
		5	Rated head of pump	m	27			
		6	Rated load of the motor	kW	160			
	Ś	7	Measured load of the motor	kW	171			
	Motors	8	Efficiency of standard motor	%	82.7			
	ĕ	9	Type of Motor		SRIM			
S		10	Motor power	kW	160.00			
Details		11	Make		KBL			
		12	HP		215			
Design		13	Efficiency	%	83.5			
De		14	Combined efficiency of the	%	60.05			
	sdu	sdund 15	system (rated)	70	69.05			
	Pun	15	Combined efficiency of the	%	52.66			
		13	system (actual)	70	J2.00			
		16	Volt	kV	3.25			
		17	Amps	А	30			
		18	rpm	rpm	1800			
	ine	19	Material		CI			
	Pipe Line	20	Size	mm	900.00			
	Pip	21	Length	m	NA			
		22	Water Pumping Details of	mld	35.00			
			station	ma	55.00			
		23	Head	m	22			
		24	Flow	m ³ /s	0.417			
		25	Density of water	kg/m ³	1000			
ils		26	Gravitational Constant	m/s ²	9.81			
Operating Details	بر	27	Hydraulic Power	kW	90.05			
പ മ	Output	28	Type of Flow Control		Thrattlin ~			
atin	OU	20	Mechanism		Throttling			
ber		29	Discharge throttle valve position	%	100			
0		29	% open	70	100			
		30	Flow Control Frequency		NIL			
		31	Working hours per day	Hrs	24			
		32	% loading of pump on flow	%	103.00			
		33	% loading of pump on head	%	81.48			
1 I.		r	% loading of motor	%	106.88			

			Performance Evaluation	of Pumps	
			Raw Water Pump House 2	-	1
	Sl No		Description	Unit	Parameters
		1	Unit code	KV	VA ALUVA
	a	2	Pump ID	RW	PH 2 (LT 1)
	General	3	Pump Application	R	aw Water
	Ge	4	Water Quality		Raw
		5	Rated head of pump	m	24
		6	Rated load of the motor	kW	130
	Ņ	7	Measured load of the motor	kW	106
	Motors	8	Efficiency of standard motor	%	92
	Ă	9	Type of Motor		IM
<u>s</u>		10	Motor power	kW	106.00
Details		11	Make		KBL
		12	HP		175
Design		13	Efficiency	%	86
De		14	Combined efficiency of the	0/	70.10
	sdı	14	system (rated)	%	79.12
	Pun	sdund 15	Combined efficiency of the	%	69.23
			system (actual)	70	09.25
		16	Volt	V	392
		17	Amps	А	180
		18	rpm	rpm	1440
	ine	19	Material		CI
	Pipe Line	20	Size	mm	1050.00
	Pip	21	Length	m	NA
		22	Water Pumping Details of	mld	38.00
		~~~	station	mu	50.00
		23	Head	m	22
		24	Flow	m ³ /s	0.340
		25	Density of water	kg/m³	1000
is S		26	Gravitational Constant	m/s ²	9.81
eta		27	Hydraulic Power	kW	73.38
Operating Details	Output		Type of Flow Control		
atin	Out	28	Mechanism		Throttling
pera		20	Discharge throttle valve position	0/	100
ō		29	% open	%	100
		30	Flow Control Frequency		NIL
		31	Working hours per day	Hrs	24
		32	% loading of pump on flow	%	77.31
		33	% loading of pump on head	%	91.67
		34	% loading of motor	%	81.54



			Performance Evaluation	of Pumps			
Raw Water Pump House 2 - LT Pump 2							
	Sl No		Description	Unit	Parameters		
		1	Unit code	KV	VA ALUVA		
	al	2	Pump ID	RW	PH 2 (LT 2)		
	Genera	3	Pump Application	R	aw Water		
	Ge	4	Water Quality		Raw		
		5	Rated head of pump	m	24		
		6	Rated load of the motor	kW	150		
	Ś	7	Measured load of the motor	kW	111		
	Motors	8	Efficiency of standard motor	%	90		
	Š	9	Type of Motor		IM		
<u>s</u> i		10	Motor power	kW	111.00		
eta		11	Make		Johnston		
Design Details		12	HP		200		
esig		13	Efficiency	%	80		
ă		14	Combined efficiency of the	%	72.00		
	sdu	sdund 15	system (rated)	/0	72.00		
	Pur	15	Combined efficiency of the	%	67.08		
			system (actual)		07.00		
			Volt	V	227		
			Amps	А	210		
			rpm	rpm	1440		
	ine		Material		CI		
	Pipe Line		Size	mm	1050.00		
	Pip	21	Length	m	NA		
		22	Water Pumping Details of	mld	40.00		
			station				
			Head	m	23		
			Flow	m ³ /s	0.330		
		25	Density of water	kg/m ³	1000		
tils		26	Gravitational Constant	m/s ²	9.81		
Operating Details	Ļ	27	Hydraulic Power	kW	74.46		
ച്ച	Output	28	Type of Flow Control		Throttling		
atir	no	20	Mechanism		Iniotang		
per		29	Discharge throttle valve position	%	100		
U U			% open	70	100		
			Flow Control Frequency		NIL		
			Working hours per day	Hrs	24		
			% loading of pump on flow	%	71.28		
			% loading of pump on head	%	95.83		
		34	% loading of motor	%	74.00		



			Performance Evaluation	of Pumps				
	Raw Water Pump House 2 - LT Pump 4							
	Sl No		Description	Unit	Parameters			
		1	Unit code	KV	VA ALUVA			
	al	2	Pump ID	RW	PH 2 (LT 4)			
	General	3	Pump Application	R	aw Water			
	Ge	4	Water Quality		Raw			
		5	Rated head of pump	m	24			
		6	Rated load of the motor	kW	150			
	ş	7	Measured load of the motor	kW	102			
	Motors	8	Efficiency of standard motor	%	90			
	Ž	9	Type of Motor		IM			
<u>is</u>		10	Motor power	kW	102.00			
eta		11	Make		Johnston			
Design Details		12	HP		200			
esig		13	Efficiency	%	80			
ă		14	Combined efficiency of the	%	72.00			
	Pumps	sdu	system (rated)	/0	72.00			
	Pur	л - 15	Combined efficiency of the	%	56.55			
			system (actual)					
			Volt	V	249			
			Amps	A	230			
			rpm	rpm	1440			
	Pipe Line		Material		CI			
	Je		Size	mm	1050.00			
	Pit	21	Length	m	NA			
		22	Water Pumping Details of	mld	40.00			
		22	station		21			
			Head	m 2 /	21			
			Flow	m ³ /s	0.280			
			Density of water	kg/m ³	1000			
ails		26	Gravitational Constant	m/s ²	9.81			
Deti	ŗ	27	Hydraulic Power	kW	57.68			
ы В	Output	28	Type of Flow Control		Throttling			
ratii	Õ		Mechanism					
Operating Details		29	Discharge throttle valve position	%	100			
			% open					
			Flow Control Frequency		NIL			
			Working hours per day	Hrs	24			
			% loading of pump on flow	%	60.48			
			% loading of pump on head	%	87.50			
		34	% loading of motor	%	68.00			



Performance Evaluation of Pumps								
	Raw Water Pump House 3 - HT Pump 1							
	Sl No		Description	Unit	- Parameters			
		1	Unit code		VA ALUVA			
	al a		Pump ID	RWF	PH 3 (HT 1)			
	Genera	3	Pump Application		aw Water			
	Gel	4	Water Quality		Raw			
		5	Rated head of pump	m	27			
		6	Rated load of the motor	kW	200			
	(0	7	Measured load of the motor	kW	111			
	Motors		Efficiency of standard motor	%	82			
	Мо	9	Type of Motor	, 0	SRIM			
S			Motor power	kW	111.00			
etail		_	Make		KBL			
Design Details			HP		268			
sign			Efficiency	%	85			
De			Combined efficiency of the	• /				
	Pumps	s 14	system (rated)	%	69.70			
	Pur		Combined efficiency of the	%	F 4 00			
	L.	15	system (actual)		54.88			
		16	Volt	KV	3.25			
		17	Amps	А	30			
		18	rpm	rpm	1800			
	ine	19	Material		GRP			
	Pipe Line	20	Size	mm	1050.00			
	Pip	21	Length	m	NA			
		22	Water Pumping Details of	mld	45.00			
		22	station	mu	45.00			
		23	Head	m	23			
		24	Flow	m ³ /s	0.270			
		25	Density of water	kg/m³	1000			
is		26	Gravitational Constant	m/s ²	9.81			
eta		27	Hydraulic Power	kW	60.92			
വ യ	Output	20	Type of Flow Control		ТЬ			
atin	no	28	Mechanism		Throttling			
Operating Details		29	Discharge throttle valve position	%	100			
0		29	% open	70	100			
		30	Flow Control Frequency		NIL			
		31	Working hours per day	Hrs	24			
		32	% loading of pump on flow	%	51.84			
		33	% loading of pump on head	%	85.19			
		34	% loading of motor	%	55.50			



			Performance Evaluation	of Pumps			
Raw Water Pump House 3 - HT Pump 2							
	Sl No		Description	Unit	Parameters		
	SL No		Unit code		VA ALUVA		
	الا	2	Pump ID		PH 3 (HT 2)		
	General	3	Pump Application		aw Water		
	Gei	4	Water Quality		Raw		
		5	Rated head of pump	m	27		
		6	Rated load of the motor	kW	200		
	ŝ	7	Measured load of the motor	kW	125		
	Motors	8	Efficiency of standard motor	%	82		
	Мо	9	Type of Motor	, -	SRIM		
S			Motor power	kW	125.00		
stail		11	Make		KBL		
Ď			HP		268		
Design Details		13	Efficiency	%	85		
De			Combined efficiency of the	0/	<b>CO 70</b>		
	sdı	s 14	system (rated)	%	69.70		
	Pumps	15	Combined efficiency of the	0/	50.57		
	H		system (actual)	%	59.57		
		16	Volt	KV	3.14		
		17	Amps	А	37		
		18	rpm	rpm	1800		
	ne	19	Material		GRP		
	Pipe Line	20	Size	mm	1050.00		
	Pip	21	Length	m	NA		
		22	Water Pumping Details of	mld	45.00		
		~~~	station	mu	43.00		
		23	Head	m	23		
		24	Flow	m ³ /s	0.330		
		25	Density of water	kg/m ³	1000		
si		26	Gravitational Constant	m/s ²	9.81		
Operating Details		27	Hydraulic Power	kW	74.46		
р В	Output	20	Type of Flow Control		TL ++1:.		
atin	Out	28	Mechanism		Throttling		
per		20	Discharge throttle valve position	0/	100		
0		29	% open	%	100		
		30	Flow Control Frequency		NIL		
		31	Working hours per day	Hrs	24		
		32	% loading of pump on flow	%	63.36		
		33	% loading of pump on head	%	85.19		
		34	% loading of motor	%	62.50		

			Performance Evaluation	of Pumps	
			Raw Water Pump House 3		3
	Sl No		Description	Unit	Parameters
	51 110	1	Unit code		VA ALUVA
		2	Pump ID		PH 3 (HT 3)
	General	3	Pump Application		aw Water
	Ger	4	Water Quality		Raw
		5	Rated head of pump	m	27
		6	Rated load of the motor	kW	200
		7	Measured load of the motor	kW	184
	Motors	8	Efficiency of standard motor	%	82
	Mo	9	Type of Motor	/0	SRIM
			Motor power	kW	184.00
tails			Make		KBL
Design Details			HP		268
<u>ig</u> i			Efficiency	%	85
Des			Combined efficiency of the	/0	05
	SC	14	system (rated)	%	69.70
	lun	sdund 15	Combined efficiency of the	%	
	4	15	system (actual)		49.26
		16	Volt	KV	3.26
			Amps	A	35.1
			rpm	rpm	1800
	e		Material		GRP
	Ľ.		Size	mm	1050.00
	Pipe Line	21	Length	m	NA
			Water Pumping Details of station	mld	45.00
		23	Head	m	21
		24	Flow	m ³ /s	0.440
		25	Density of water	kg/m ³	1000
Ś			Gravitational Constant	m/s ²	9.81
etail			Hydraulic Power	kW	90.64
Operating Details	Output		Type of Flow Control Mechanism		Throttling
Opera	•	29	Discharge throttle valve position % open	%	100
		30	Flow Control Frequency		NIL
			Working hours per day	Hrs	24
			% loading of pump on flow	%	84.48
			% loading of pump on head	%	77.78
			% loading of motor	%	92.00

Performance Evaluation of Pumps							
			Pure Water Pump House 1		1		
	Sl No		Description	Unit	Parameters		
			Unit code		VA ALUVA		
	al	2	Pump ID	PWPH 1 (HT 1)			
	General	3	Pump Application	Pi	ure Water		
	Ge	4	Water Quality		Good		
		5	Rated head of pump	m	82		
		6	Rated load of the motor	kW	375		
	S	7	Measured load of the motor	kW	378		
	Motors	8	Efficiency of standard motor	%	82		
	Š	9	Type of Motor		SRIM		
്		10	Motor power	kW	378.00		
Details		11	Make		KBL		
		12	HP		503		
Design		13	Efficiency	%	85		
ð		14	Combined efficiency of the	%	69.70		
	Pumps	14	system (rated)	/0	09.70		
	Pur	15	Combined efficiency of the	%	51.83		
		15	system (actual)	/0	51.05		
		16	Volt	KV	3.26		
			Amps	А	70		
			rpm	rpm	1800		
	ine	19	Material		CI		
	Pipe Line		Size	mm	1200.00		
	Pip	21	Length	m	NA		
		22	Water Pumping Details of	mld	35.00		
			station				
			Head	m	63		
		24	Flow	m³/s	0.317		
		25	Density of water	kg/m ³	1000		
lils		26	Gravitational Constant	m/s ²	9.81		
Operating Details	÷	27	Hydraulic Power	kW	195.92		
ച്ച	Output	28	Type of Flow Control		Throttling		
atir	ΟU	20	Mechanism		mouing		
per		29	Discharge throttle valve position	%	100		
0		23	% open	/0	100		
		<u> </u>	Flow Control Frequency		NIL		
		31	Working hours per day	Hrs	24		
			% loading of pump on flow	%	78.25		
		33	% loading of pump on head	%	76.83		
		34	% loading of motor	%	100.80		

Performance Evaluation of Pumps							
			Pure Water Pump House 1		2		
	Sl No		Description	Unit	Parameters		
		1	Unit code	KV	VA ALUVA		
	al	2	Pump ID	PWF	PH 1 (HT 2)		
	General	3	Pump Application		ure Water		
	Ge	4	Water Quality				
		5	Rated head of pump	m	82		
		6	Rated load of the motor	kW	375		
	Ś	7	Measured load of the motor	kW	370		
	Motors	8	Efficiency of standard motor	%	82		
	Ĕ	9	Type of Motor		SRIM		
്		10	Motor power	kW	370.00		
etai		11	Make		KBL		
Design Details		12	HP		503		
ssigi		13	Efficiency	%	85		
ŏ		14	Combined efficiency of the	%	69.70		
	Pumps	14	system (rated)	70	09.70		
		15	Combined efficiency of the	%	51.78		
		13	system (actual)	/0	51.76		
		16	Volt	KV	3.26		
		17	Amps	А	70		
		18	rpm	rpm	1800		
	ine		Material		CI		
	Pipe Line		Size	mm	1200.00		
	Pip	21	Length	m	NA		
		22	Water Pumping Details of	mld	35.00		
			station				
			Head	m	63		
		24	Flow	m ³ /s	0.310		
		25	Density of water	kg/m³	1000		
sli		26	Gravitational Constant	m/s ²	9.81		
Operating Details	Ļ	27	Hydraulic Power	kW	191.59		
പ്പ	Output	28	Type of Flow Control		Throttling		
atir	nO	20	Mechanism				
ber		29	Discharge throttle valve position	%	100		
O		29	% open	/0	100		
			Flow Control Frequency		NIL		
			Working hours per day	Hrs	24		
			% loading of pump on flow	%	76.53		
			% loading of pump on head	%	76.83		
		34	% loading of motor	%	98.67		

Performance Evaluation of Pumps						
			Pure Water Pump House 1 - H	T Pump 6		
SI No Description Unit Parameter 1 Unit Filler Filler						
		1	Unit code	KWA ALUVA		
	ral		Pump ID	PWPH 1 (HT 6)		
	General	3	Pump Application	P	ure Water	
	Ğ	4	Water Quality	Raw		
		5	Rated head of pump	m	82	
		6	Rated load of the motor	kW	160	
	S	7	Measured load of the motor	kW	143	
	Motors	8	Efficiency of standard motor	%	82	
	Σ	9	Type of Motor		SRIM	
si			Motor power	kW	143.00	
Details			Make		KBL	
		12	HP		215	
Design		13	Efficiency	%	85	
Õ	Pumps	14	Combined efficiency of the system (rated)	%	69.70	
		15	Combined efficiency of the system (actual)	%	41.16	
		16	Volt	KV	3.16	
		17	Amps	А	26	
		18	rpm	rpm	1800	
	Line	19	Material		CI	
	e E	20	Size	mm	1200.00	
	Pipe	21	Length	m	NA	
		22	Water Pumping Details of station	mld	35.00	
		23	Head	m	50	
		24	Flow	m ³ /s	0.120	
		25	Density of water	kg/m ³	1000	
Operating Details		26	Gravitational Constant	m/s ²	9.81	
Det	ut	27	Hydraulic Power	kW	58.86	
ing	Output	28	Type of Flow Control Mechanism		Throttling	
erat	0	29	Discharge throttle valve position % open	%	100	
Op€			Flow Control Frequency		NIL	
			Working hours per day	Hrs	24	
			% loading of pump on flow	%	29.62	
			% loading of pump on head	%	60.98	
		34	% loading of motor	%	89.38	

Performance Evaluation of Pumps							
			Pure Water Pump House 2 - H	T Pump 1			
	Sl No		Description	Unit	Parameters		
		1	Unit code	KV	VA ALUVA		
	ral	2	Pump ID	PWF	PH 2 (HT 1)		
	General	3	Pump Application	Pi	ure Water		
	Ğ	4	Water Quality	Raw			
		5	Rated head of pump	m	82		
		6	Rated load of the motor	kW	350		
	S	7	Measured load of the motor	kW	331		
	Motors	8	Efficiency of standard motor	%	85		
	Σ	9	Type of Motor		SRIM		
sli		10	Motor power	kW	331.00		
Details			Make		KBL		
		12	HP		469		
Design		13	Efficiency	%	75		
Õ	Pumps	14	Combined efficiency of the system (rated)	%	63.75		
		15	Combined efficiency of the system (actual)	%	62.59		
		16	Volt	KV	3.26		
		17	Amps	А	60		
		18	rpm	rpm	1800		
	ne	19	Material		CI		
	Pipe Line	20	Size	mm	1200.00		
	Pip	21	Length	m	NA		
		22	Water Pumping Details of station	mld	35.00		
		23	Head	m	44		
		24	Flow	m ³ /s	0.480		
		25	Density of water	kg/m ³	1000		
Details		26	Gravitational Constant	m/s ²	9.81		
De	ut	27	Hydraulic Power	kW	207.19		
ing	Output	28	Type of Flow Control Mechanism		Throttling		
Operating	0	29	Discharge throttle valve position % open	%	100		
ŎĎ		30	Flow Control Frequency		NIL		
		31	Working hours per day	Hrs	24		
		32	% loading of pump on flow	%	118.49		
			% loading of pump on head	%	53.66		
		34	% loading of motor	%	94.57		

Performance Evaluation of Pumps							
			Pure Water Pump House 2 - H	T Pump 3			
	Sl No)	Description	Unit	Parameters		
		1	Unit code	KV	VA ALUVA		
	ral	2	Pump ID	PWF	PH 2 (HT 3)		
	General	3	Pump Application	Pi	ure Water		
	Ğ	4	Water Quality	Raw			
		5	Rated head of pump	m	82		
		6	Rated load of the motor	kW	350		
	S	7	Measured load of the motor	kW	310		
	Motors	8	Efficiency of standard motor	%	85		
	Σ	9	Type of Motor		SRIM		
sli		10	Motor power	kW	310.00		
Details			Make		KBL		
		12	HP		469		
Design		13	Efficiency	%	75		
ŏ	Pumps	14	Combined efficiency of the system (rated)	%	63.75		
		15	Combined efficiency of the system (actual)	%	52.91		
		16	Volt	KV	3.25		
		17	Amps	A	70		
		18	rpm	rpm	1800		
	ne	19	Material		CI		
	Pipe Line	20	Size	mm	1200.00		
	Pip	21	Length	m	NA		
		22	Water Pumping Details of station	mld	35.00		
		23	Head	m	44		
		24	Flow	m ³ /s	0.380		
		25	Density of water	kg/m ³	1000		
Details		26	Gravitational Constant	m/s ²	9.81		
De	ut	27	Hydraulic Power	kW	164.02		
ing	Output	28	Type of Flow Control Mechanism		Throttling		
Operating	0	29	Discharge throttle valve position % open	%	100		
ŎĎ		30	Flow Control Frequency		NIL		
		31	Working hours per day	Hrs	24		
		32	% loading of pump on flow	%	93.81		
			% loading of pump on head	%	53.66		
		34	% loading of motor	%	88.57		

Performance Evaluation of Pumps							
			Pure Water Pump House 3 - H	T Pump 3			
Sl No Description Unit Parameters 1 Unit FWA AULIVA							
		1	Unit code	KV	VA ALUVA		
	้าลไ	2	Pump ID	PWPH 3 (HT 3)			
	General	3	Pump Application	Pi	ure Water		
	Ğ	4	Water Quality	Raw			
		5	Rated head of pump	m	82		
		6	Rated load of the motor	kW	320		
	S	7	Measured load of the motor	kW	200		
	Motors	8	Efficiency of standard motor	%	90		
	Σ	9	Type of Motor		SRIM		
ii.		10	Motor power	kW	200.00		
Details		11	Make		KBL		
			HP		429		
Design		13	Efficiency	%	88.5		
ŏ	Pumps	14	Combined efficiency of the system (rated)	%	79.65		
		15	Combined efficiency of the system (actual)	%	71.42		
		16	Volt	KV	3.16		
		17	Amps	А	57		
		18	rpm	rpm	1800		
	ine	19	Material		CI		
	Pipe Line	20	Size	mm	1200.00		
	Pip	21	Length	m	NA		
		22	Water Pumping Details of station	mld	35.00		
		23	Head	m	28		
		24	Flow	m ³ /s	0.520		
		25	Density of water	kg/m ³	1000		
tails		26	Gravitational Constant	m/s ²	9.81		
De	ut	27	Hydraulic Power	kW	142.83		
ing	Output	28	Type of Flow Control Mechanism		Throttling		
Operating Details	0	29	Discharge throttle valve position % open	%	100		
0p(30	Flow Control Frequency		NIL		
		31	Working hours per day	Hrs	24		
		32	% loading of pump on flow	%	128.37		
		33	% loading of pump on head	%	34.15		
		34	% loading of motor	%	62.50		

Performance Evaluation of Pumps							
			Pure Water Pump House 3 - H	T Pump 4			
					Parameters		
		1	Unit code	KWA ALUVA			
	ral	2	Pump ID	PWF	PH 3 (HT 4)		
	General	3	Pump Application	Pi	ure Water		
	Ğ	4	Water Quality	Raw			
		5	Rated head of pump	m	82		
		6	Rated load of the motor	kW	350		
	S	7	Measured load of the motor	kW	200		
	Motors	8	Efficiency of standard motor	%	90		
	Σ	9	Type of Motor		SRIM		
sli		10	Motor power	kW	200.00		
Details		11	Make		KBL		
			HP		469		
Design		13	Efficiency	%	88.5		
Ď	sdi	14	Combined efficiency of the system (rated)	%	79.65		
	Pumps	15	Combined efficiency of the system (actual)	%	67.30		
		16	Volt	KV	3.22		
		17	Amps	А	53		
			rpm	rpm	1800		
	Line		Material		CI		
		20	Size	mm	1200.00		
	Pipe	21	Length	m	NA		
		22	Water Pumping Details of station	mld	35.00		
			Head	m	28		
		24	Flow	m ³ /s	0.490		
		25	Density of water	kg/m ³	1000		
Details		26	Gravitational Constant	m/s ²	9.81		
Det	ut	27	Hydraulic Power	kW	134.59		
ing	Output	28	Type of Flow Control Mechanism		Throttling		
erat	0	29	Discharge throttle valve position % open	%	100		
Operating		30	Flow Control Frequency		NIL		
		31	Working hours per day	Hrs	24		
		32	% loading of pump on flow	%	120.96		
		33	% loading of pump on head	%	34.15		
		34	% loading of motor	%	57.14		

Performance Evaluation of Pumps							
			Pure Water Pump House 3 - H	T Pump 5			
	Sl No)	Description	Unit	Parameters		
		1	Unit code	KV	VA ALUVA		
	al	2	Pump ID	PWPH 3 (HT 5)			
	General	3	Pump Application	Pi	ure Water		
	Ğ	4	Water Quality	Raw			
		5	Rated head of pump	m	82		
		6	Rated load of the motor	kW	350		
	rs	7	Measured load of the motor	kW	202		
	Motors	8	Efficiency of standard motor	%	90		
	Σ	9	Type of Motor		SRIM		
<u>ii</u>		10	Motor power	kW	202.00		
Details		11	Make		KBL		
		12	HP		469		
Design		13	Efficiency	%	88.5		
Õ	Pumps	14	Combined efficiency of the system (rated)	%	79.65		
		15	Combined efficiency of the system (actual)	%	61.33		
		16	Volt	KV	3.23		
		17	Amps	А	53		
		18	rpm	rpm	1800		
	Line	19	Material		CI		
	E. B	20	Size	mm	1200.00		
	Pipe	21	Length	m	NA		
		22	Water Pumping Details of station	mld	35.00		
		23	Head	m	28		
		24	Flow	m ³ /s	0.451		
		25	Density of water	kg/m ³	1000		
Details		26	Gravitational Constant	m/s ²	9.81		
Dei	ut	27	Hydraulic Power	kW	123.88		
Operating	Output	28	Type of Flow Control Mechanism		Throttling		
erat	0	29	Discharge throttle valve position % open	%	100		
) O D		30	Flow Control Frequency		NIL		
		31	Working hours per day	Hrs	24		
		32	% loading of pump on flow	%	111.33		
		33	% loading of pump on head	%	34.15		
		34	% loading of motor	%	57.71		

Performance Evaluation of Pumps							
			Pure Water Pump House 3 - L	T Pump 1			
					Parameters		
		1	Unit code	KWA ALUVA			
	al	2	Pump ID	PWPH 1 (HT 1)			
	General	3	Pump Application	P	ure Water		
	Ğ	4	Water Quality	Raw			
		5	Rated head of pump	m	82		
		6	Rated load of the motor	kW	112		
	S	7	Measured load of the motor	kW	107		
	Motors	8	Efficiency of standard motor	%	90		
	Σ	9	Type of Motor		SRIM		
ils		10	Motor power	kW	107.00		
Details		11	Make		KBL		
		12	HP		150		
Design		13	Efficiency	%	88.5		
ð	Pumps	14	Combined efficiency of the system (rated)	%	79.65		
		15	Combined efficiency of the system (actual)	%	37.96		
		16	Volt	V	228		
		17	Amps	А	158		
		18	rpm	rpm	1800		
	Line	19	Material		CI		
	ت: دە	20	Size	mm	1200.00		
	Pipe	21	Length	m	NA		
		22	Water Pumping Details of station	mld	8.50		
		23	Head	m	60		
		24	Flow	m ³ /s	0.069		
		25	Density of water	kg/m ³	1000		
Details		26	Gravitational Constant	m/s ²	9.81		
Dei	ut	27	Hydraulic Power	kW	40.61		
ing	Output	28	Type of Flow Control Mechanism		Throttling		
erat	0	29	Discharge throttle valve position % open	%	100		
Operating		30	Flow Control Frequency		NIL		
		31	Working hours per day	Hrs	24		
		32	% loading of pump on flow	%	70.14		
		33	% loading of pump on head	%	73.17		
		34	% loading of motor	%	95.54		

Performance Evaluation of Pumps							
			Pure Water Pump House 3 - L	T Pump 5			
					Parameters		
		1	Unit code	KWA ALUVA			
	al	2	Pump ID	PWPH 3 (HT 5)			
	General	3	Pump Application	Pi	ure Water		
	Ğ	4	Water Quality	Raw			
		5	Rated head of pump	m	82		
		6	Rated load of the motor	kW	90		
	S	7	Measured load of the motor	kW	83		
	Motors	8	Efficiency of standard motor	%	85		
	Σ	9	Type of Motor		SRIM		
iis		10	Motor power	kW	83.00		
Details		11	Make		KBL		
		12	HP		120		
Design		13	Efficiency	%	84.5		
ŏ	Pumps	14	Combined efficiency of the system (rated)	%	71.83		
		15	Combined efficiency of the system (actual)	%	67.02		
		16	Volt	V	396		
		17	Amps	А	140		
		18	rpm	rpm	1800		
	Line	19	Material		CI		
	ت: دە	20	Size	mm	1200.00		
	Pipe	21	Length	m	NA		
		22	Water Pumping Details of station	mld	8.00		
		23	Head	m	54		
		24	Flow	m ³ /s	0.105		
		25	Density of water	kg/m ³	1000		
Details		26	Gravitational Constant	m/s ²	9.81		
De	ut	27	Hydraulic Power	kW	55.62		
ing	Output	28	Type of Flow Control Mechanism		Throttling		
Operating	0	29	Discharge throttle valve position % open	%	100		
ŎĎ		30	Flow Control Frequency		NIL		
		31	Working hours per day	Hrs	24		
		32	% loading of pump on flow	%	113.40		
			% loading of pump on head	%	65.85		
		34	% loading of motor	%	92.22		

5.2.3. Lighting system

Lighting is one of the major electrical loads connected in the system. T12 and T8 tubes are extensively used in most of the areas and Sodium vapor, Fluorescent etc. in factory/ street lighting. Hardly any LED lights or tubes are used. This is a good component of the load of the facility and replacing these T12 & T 8 tubes with LED tubes can lead to a significant reduction in the load. Good lighting design can reduce costs and have the added benefit of decreasing internal heat gains, thus reducing the need for air conditioning too.

					Lis	t of Light L	oads						
Sl. No.	Location	T12	Т8	Т5	CFL	LED-B	LED-B (40W)	LED-T	CF	EF	PF	PC	AC (1.5T)
1	Office	17	1						4			2	
2	Substation 1	10	1						4	1			
3	Substation 2	3		1				1	2	1			
4	Substation 3	44						8		5			
5	Old Control Room	3	3					1	1			3	1
6	Pump Room	3						2		4			
7	Treatment Plant	29						5	1	4	1		
8	Raw Water PH 1	3				1		1	1				
9	Raw Water PH 2	3							1				
10	PWPH	58					8	2	6	4	1		
	Total	173	5	1	0	1	8	20	20	19	2	5	1

All T8 and T12 Lamps shall be replaced with LED tubes or even T5 and the existing CFLs may be shifted to LED in phased manner. Since lighting does not have a separate feeder, the voltage stabilizer cannot be used specifically for this purpose.

Power Quality

Power quality is simply the interaction of electrical power with electrical equipment. If electrical equipment operates correctly and reliably without being damaged or stressed, we would say that the electrical power is of good quality. On the other hand, if the electrical equipment malfunctions, is unreliable, or is damaged during normal usage, we would suspect that the power quality is poor.

In any alternating current network, flow of current depends upon the voltage applied and the impedance (resistance to AC) provided by elements like resistances, reactance's of inductive and capacitive nature. Harmonics occurs as spikes at intervals

which are multiples of the mains (supply) frequency and these distort the pure sine wave form of the supply voltage & current. The poor power quality end up with power loss.

Power system harmonic distortion is not a new phenomenon - efforts to limit it to acceptable proportions have been a concern of power engineers from the early days of utility systems. At that time, the distortion was typically caused by the magnetic saturation of transformers or by certain industrial loads, such as arc furnaces or arc welders. The major concerns were the effects of harmonics on synchronous and induction machines, telephone interference, and power capacitor failures. In the past, harmonic problems could often be tolerated because equipment was of conservative design and grounded wye-delta transformer connections were used judiciously.

Harmonic distortion

Harmonic distortion problems are not new to utility and industrial power systems. In fact, such distortion was observed by utility operating personnel as early as the first decade of this century. Typically, the distortion was caused by nonlinear loads connected to utility distribution systems. In addition to the increase in harmonic generators and network resonances, electric systems and loads have become no less, and in some cases even more, sensitive to harmonics. There are a number of areas of new and continuing concern

- Computers, computer-controlled machine tools, and various types of digital controllers are especially susceptible to harmonics, as well as to other types of interference.
- Harmonics can cause damaging dielectric heating in underground cables.
- Inductive metering can be adversely affected by harmonics.
- Capacitor bank failures are frequently caused by harmonics.
- Less conservative designs for rotating machines and transformers aggravate heating problems caused by harmonics.
- Harmonics can be especially troublesome to communication systems.

	POWER	QUALITY	ANALYSIS RI	EPORT		
		KWA	Aluva			
Locatio	n & Code:	RWPH No 2 (No 4 -200HP)				
Date &	Time	21-01-202	0 11:31 to 2	1-01-2020 11:3	2	
Referen	ce	Technical S	Supplement			
Sl No	Category		Summary Ana	alysis	Remarks	
1	Voltage Continuity (Input)		Good		Normal	
		R	24	19.00		
2	RMS Voltage level	Y	24	19.00	Normal	
		В	22	29.00		
3	Voltage wave forms		Sine wave	ç	Normal	
4	Dips & Swells	Not record	led during loa	ad study period	Normal	
5	Transient Voltages	Not recorded during load study period			Normal	
6	voitage fluctuations /	Not record	led during loa	Normal		
7	Power factor		Low power factor			
8	Load Current (Waveform)		Normal			
9	Load generated		Kef. Lechnical			
	Harmonic Analysis	Phase	Load (A)	THD (%)		
	THD (V) % (Permissible	R	181.33	0.78	Within	
10	limits<3% as per CEA- Technical standards for	Y	181.45	0.83	permissible limit at Average load	
	connectivity to the grid-	В	167.05	0.89	during load	
	THD (I) % Permissible	R	181.33	1.07	Within	
11	limits<8% as per CEA- Technical standards for	Y	181.45	1.24	permissible limit at Average load	
	connectivity to the grid-	В	167.05	0.89	during load	
12	Frequency		50		Normal	
13 Keliability of electricity		Good			Normal	
14	Earthing	Good			Normal	

	POWEI	R QUALITY	ANALYSIS F	REPORT	
		KWA	A Aluva		
Locatio	n & Code:	RWPH No	2 (No 4 -200	HP)	
Date &	Time	21-01-202	0 11:31 to 2	1-01-2020 11:32	
Referen	ce	Technical	Supplement		
Sl No	Category		Summary An	alysis	Remarks
1	Voltage Continuity (Input)		Good		Normal
		R	2	49.00	
2	RMS Voltage level	Y	2	49.00	Normal
		В	2	29.00	
3	Voltage wave forms		Sine wav	e	Normal
4	Dips & Swells	Not record	led during loa	ad study period	Normal
5	Transient Voltages	Not record	led during loa	Normal	
6	Voltage fluctuations / flicker	Not record	led during loa	Normal	
7	Power factor		0.77	Low power factor	
8	Load Current (Waveform)	Sine wave			Normal
9	Load generated disturbances	Absent			Ref. Technical suppliment
	Harmonic Analysis	Phase	Load (A)	THD (%)	
	THD (V) % (Permissible limits<3%	R	215.90	0.62	Within permissible limit at
10	as per CEA- Technical standards	Y	210.40	0.72	Average load during load
	for connectivity to the grid-2007)	В	207.20	0.55	study
	THD (I) % Permissible limits<8%	R	215.90	1.67	Within permissible limit at
11	as per CEA- Technical standards	Y	210.40	1.86	Average load during load
	for connectivity to the grid-2007))	В	207.20	1.68	study
12	Frequency	50			Normal
13	Reliability of electricity supply	Good			Normal
14	Earthing		Good		Normal

	POWE	R QUALITY	ANALYSIS F	REPORT	
		KWA	A Aluva		
Locatio	n & Code:	RWPH No	2 (No 4 -200)HP)	
Date &	Time	21-01-202	0 11:31 to 2	1-01-2020 11:32	
Referen	ce	Technical	Supplement		
Sl No	Category		Summary An	alysis	Remarks
1	Voltage Continuity (Input)		Good		Normal
		R	2	49.00	
2	RMS Voltage level	Y	2	49.00	Normal
		В	2	29.00	
3	Voltage wave forms		Sine way	/e	Normal
4	Dips & Swells	Not record	led during loa	ad study period	Normal
5	Transient Voltages	Not record	led during loa	Normal	
6	Voltage fluctuations / flicker	Not record	led during loa	Normal	
7	Power factor		0.59	Low power factor	
8	Load Current (Waveform)	Sine wave			Normal
9	Load generated disturbances		Absent	Ref. Technical suppliment	
	Harmonic Analysis	Phase	Load (A)	THD (%)	
	THD (V) % (Permissible limits<3%	R	236.90	0.76	Within permissible limit at
10	as per CEA- Technical standards	Y	230.20	0.72	Average load during load
	for connectivity to the grid-2007)	В	236.80	0.73	study
	THD (I) % Permissible limits<8%	R	236.90	3.45	Within permissible limit at
11	as per CEA- Technical standards	Y	230.20	3.69	Average load during load
	for connectivity to the grid-2007))	В	236.80	3.23	study
12	Frequency	50			Normal
13	Reliability of electricity supply	Good			Normal
14	Earthing	Good Normal			Normal

	POWEI	R QUALITY	ANALYSIS F	REPORT	
		KWA SS-2	A Aluva		
	n & Code:				
Date & Time 11-03-2020 10:05 to 11-03-2020 10: Reference Technical Supplement					
Referen Sl No	ce Category	Technical	Supplement Summary An	alveis	Remarks
-				alysis	
1	Voltage Continuity (Input)		Good		Normal
		R	10	.504kV	
2	RMS Voltage level	Y	10	.448kV	Normal
		В	10	.473kV	
3	Voltage wave forms		Sine way	e	Normal
4	Dips & Swells	Not record	led during loa	ad study period	Normal
5	Transient Voltages	Not record	led during loa	ad study period	Normal
6	Voltage fluctuations / flicker	Not record	led during loa	Normal	
7	Power factor		0.99	Normal	
8	Load Current (Waveform)		Sine way	Normal	
9	Load generated disturbances		Absent	Ref. Technical suppliment	
	Harmonic Analysis	Phase	Load (A)	THD (%)	
	THD (V) % (Permissible limits<3%	R	81.02	1.48	Within permissible limit at
10	as per CEA- Technical standards	Y	81.84	1.25	Average load during load
	for connectivity to the grid-2007)	В	77.14	1.38	study
	THD (I) % Permissible limits<8%	R	81.02	3.10	Within permissible limit at
11	as per CEA- Technical standards	Y	81.84	2.99	Average load during load
	for connectivity to the grid-2007))	В	77.14	3.71	study
12	Frequency	49.98			Normal
13	Reliability of electricity supply	Good			Normal
14	Earthing		Good		Normal

	POWEI		ANALYSIS F	REPORT			
			A Aluva				
Locatio Date &	n & Code:	RWPH-3	0 00.EE to 1	1 02 2020 10.02			
Date & Referen		11-03-2020 09:55 to 11-03-2020 10:02 Technical Supplement					
SL No	Category	recrimeat	Summary An	alvsis	Remarks		
1	Voltage Continuity (Input)		Good		Normal		
		R	10	.478kV			
2	RMS Voltage level	Y		.426kV	Normal		
		В	10	.450kV	-		
3	Voltage wave forms		Sine way	e	Normal		
4	Dips & Swells	Not record	led during loa	ad study period	Normal		
5	Transient Voltages	Not record	led during loa	ad study period	Normal		
6	Voltage fluctuations / flicker	Not record	led during loa	Normal			
7	Power factor		0.96	Normal			
8	Load Current (Waveform)		Sine wav	Normal			
9	Load generated disturbances		Absent	Ref. Technical suppliment			
	Harmonic Analysis	Phase	Load (A)	THD (%)			
	THD (V) % (Permissible limits<3%	R	29.44	1.39	Within permissible limit at		
10	as per CEA- Technical standards for connectivity to the grid-2007)	Y	27.58	1.11	Average load during load		
	for connectivity to the gnu-2007)	В	29.13	1.40	study		
	THD (I) % Permissible limits<8%	R	29.44	2.11	Within permissible limit at		
11	as per CEA- Technical standards for connectivity to the grid-2007))	Y	27.58	2.18	Average load during load		
	for connectivity to the gna-2007)	В	29.13	2.35	study		
12	Frequency	50.07			Normal		
13	Reliability of electricity supply	Good			Normal		
14	Earthing	Good Normal			Normal		

POWEI	r quality	ANALYSIS F	REPORT	
	KWA	Aluva		
n & Code:				
Time			1-03-2020 10:33	
ce	Technical			
			alysis	Remarks
Voltage Continuity (Input)		Good		Normal
	R	3.	143kV	
RMS Voltage level	Y	3.	142kV	Normal
	В	3.	171kV	
Voltage wave forms		Sine wav	e	Normal
Dips & Swells	Not record	led during loa	Normal	
Transient Voltages	Not record	led during loa	Normal	
Voltage fluctuations / flicker	Not record	led during loa	Normal	
Power factor		0.64	Low power factor	
Load Current (Waveform)		Sine wav	Normal	
Load generated disturbances		Absent		Ref. Technical suppliment
Harmonic Analysis	Phase	Load (A)	THD (%)	
THD (V) % (Permissible limits<3%	R	33.90	2.21	Within permissible limit at
as per CEA- Technical standards	Y	37.50	1.80	Average load during load
for connectivity to the grid-2007)	В	35.24	1.55	study
THD (I) % Permissible limits<8%	R	33.90	1.62	Within permissible limit at
as per CEA- Technical standards	Y	37.50	1.37	Average load during load
for connectivity to the grid-2007))	В	35.24	1.50	study
Frequency	50			Normal
Reliability of electricity supply	Good			Normal
Earthing		Good		Normal
	& Code: Time e Category Voltage Continuity (Input) RMS Voltage level Voltage wave forms Dips & Swells Transient Voltages Voltage fluctuations / flicker Power factor Load Current (Waveform) Load generated disturbances Harmonic Analysis THD (V) % (Permissible limits<3% as per CEA- Technical standards for connectivity to the grid-2007) THD (I) % Permissible limits<8% as per CEA- Technical standards for connectivity to the grid-2007)) Frequency Reliability of electricity supply	KWA& Code:RWPH-3 (PTime11-03-202eTechnical :CategoryVoltage Continuity (Input)RMS Voltage levelYBYVoltage wave formsDips & SwellsDips & SwellsNot recordTransient VoltagesNot recordVoltage fluctuations / flickerNot recordPower factorImage: CategoryLoad current (Waveform)Image: CategoryLoad generated disturbancesPhaseTHD (V) % (Permissible limits<3% for connectivity to the grid-2007)RTHD (I) % Permissible limits<8% for connectivity to the grid-2007)RFrequencyReliability of electricity supply	KWA Aluva& Code:RWPH-3 (Pump-2)Time11-03-2020 10:30 to 11eTechnical SupplementCategorySummary AnVoltage Continuity (Input)GoodRMS Voltage levelY3.BVoltage wave formsSine wavDips & SwellsNot recorded during loaTransient VoltagesNot recorded during loaVoltage fluctuations / flickerNot recorded during loaPower factor0.64Load Current (Waveform)Sine wavLoad generated disturbancesAbsentHarmonic AnalysisPhaseLoad (A)THD (V) % (Permissible limits<3% as per CEA- Technical standards for connectivity to the grid-2007)RTHD (I) % Permissible limits<8% as per CEA- Technical standards for connectivity to the grid-2007)RB35.24Frequency50Reliability of electricity supplyGood	KWA Aluva& Code:RWPH-3 (Pump-2)Time11-03-2020 10:30 to 11-03-2020 10:33eTechnical SupplementCategorySummary AnalysisVoltage Continuity (Input)GoodRMS Voltage levelR3.143kVY3.142kVB3.171kVVoltage wave formsSine waveDips & SwellsNot recorded during load study periodTransient VoltagesNot recorded during load study periodVoltage fluctuations / flickerNot recorded during load study periodPower factor0.64Load Current (Waveform)Sine waveLoad generated disturbancesAbsentHarmonic AnalysisPhaseLoad (A)THD (V) % (Permissible limits<3% for connectivity to the grid-2007)RB35.241.55THD (I) % Permissible limits<8% for connectivity to the grid-2007)RB35.241.50Frequency50Reliability of electricity supplyGood

	POWE	R QUALITY	ANALYSIS F	REPORT	
		KWA	A Aluva		
	on & Code:	4.PWPH-3			
Date &				1-03-2020 10:37	
Referen		Technical	Supplement		
Sl No	Category		Summary An	alysis	Remarks
1	Voltage Continuity (Input)		Good		Normal
		R	3.	140kV	
2	RMS Voltage level	Y	3.	140kV	Normal
		В	3.	168kV	
3	Voltage wave forms		Sine way	/e	Normal
4	Dips & Swells	Not record	led during loa	Normal	
5	Transient Voltages	Not record	led during loa	Normal	
6	Voltage fluctuations / flicker	Not record	led during loa	Normal	
7	Power factor		0.66	Low power factor	
8	Load Current (Waveform)	Sine wave			Normal
9	Load generated disturbances		Absent	Ref. Technical suppliment	
	Harmonic Analysis	Phase	Load (A)	THD (%)	
	THD (V) % (Permissible limits<3%	R	53.91	2.28	Within permissible limit at
10	as per CEA- Technical standards	Y	58.00	2.16	Average load during load
	for connectivity to the grid-2007)	В	56.07	1.61	study
	THD (I) % Permissible limits<8%	R	53.91	3.39	Within permissible limit at
11	as per CEA- Technical standards	Y	58.00	2.38	Average load during load
	for connectivity to the grid-2007))	В	56.07	2.87	study
12	Frequency	50			Normal
13	Reliability of electricity supply	Good			Normal
14	Earthing	Good Normal			

	POWE	R QUALITY	ANALYSIS F	REPORT	
		KWA	Aluva		
Locatio	n & Code:	PWPH-1(Pu			
Date &	Time	11-03-202	0 10:43 to 1	1-03-2020 10:46	
Referen		Technical	Supplement		1
Sl No	Category		Summary An	alysis	Remarks
1	Voltage Continuity (Input)		Good		Normal
		R	3.	158kV	
2	RMS Voltage level	Y	3.	164kV	Normal
		В	3.	164kV	
3	Voltage wave forms		Sine wav	re	Normal
4	Dips & Swells	Not record	led during loa	Normal	
5	Transient Voltages	Not record	led during loa	Normal	
6	Voltage fluctuations / flicker	Not record	led during loa	Normal	
7	Power factor		0.98	Normal	
8	Load Current (Waveform)		Sine way	Normal	
9	Load generated disturbances		Absent	Ref. Technical suppliment	
	Harmonic Analysis	Phase	Load (A)	THD (%)	
	THD (V) % (Permissible limits<3%	R	27.41	1.50	Within permissible limit at
10	as per CEA- Technical standards	Y	26.61	1.80	Average load during load
	for connectivity to the grid-2007)	В	24.99	2.09	study
	THD (I) % Permissible limits<8%	R	27.41	1.94	Within permissible limit at
11	as per CEA- Technical standards	Y	26.61	2.51	Average load during load
	for connectivity to the grid-2007))	В	24.99	2.23	study
12	Frequency	50.06			Normal
13	Reliability of electricity supply	Good			Normal
14	Earthing		Good		Normal

	POWE	R QUALITY	ANALYSIS R	EPORT	
		KWA	A Aluva		
Locatio	n & Code:	6.PWPH-3(Pump 5) HT		
Date &	Time	11-03-202	0 10:51 to 1	1-03-2020 10:54	
Referen	nce	Technical	Supplement		
Sl No	Category		Summary An	alysis	Remarks
1	Voltage Continuity (Input)		Good		Normal
		R	3.	222kV	
2	RMS Voltage level	Y	3.	221kV	Normal
		В	3.	229kV	
3	Voltage wave forms		Sine wav	e	Normal
4	Dips & Swells	Not record	led during loa	d study period	Normal
5	Transient Voltages	Not record	led during loa	Normal	
6	Voltage fluctuations / flicker	Not record	led during loa	Normal	
7	Power factor		-0.65	Leading	
8	Load Current (Waveform)		Sine wav	Normal	
9	Load generated disturbances		Absent	Ref. Technical suppliment	
	Harmonic Analysis	Phase	Load (A)	THD (%)	
	THD (V) % (Permissible limits<3%	R	56.01	2.13	Within permissible limit at
10	as per CEA- Technical standards	Y	53.54	2.18	Average load during load
	for connectivity to the grid-2007)	В	55.19	2.07	study
	THD (I) % Permissible limits<8%	R	56.01	4.20	Within permissible limit at
11	as per CEA- Technical standards	Y	53.54	5.00	Average load during load
	for connectivity to the grid-2007))	В	55.19	5.03	study
12	Frequency	49.98 Normal			Normal
13	Reliability of electricity supply	Good			Normal
14	Earthing		Good		Normal

	POWEI	R QUALITY	ANALYSIS R	EPORT		
		KWA	Aluva			
	n & Code:	PWPH-3(Pu	mp-4)			
Date &				1-03-2020 10:59		
Referen		Technical	Supplement			
Sl No	Category		Summary An	alysis	Remarks	
1	Voltage Continuity (Input)		Good		Normal	
		R	3.	217kV		
2	RMS Voltage level	Y	3.	225kV	Normal	
		В	3.	224kV		
3	Voltage wave forms		Sine wav	e	Normal	
4	Dips & Swells	Not record	led during loa	nd study period	Normal	
5	Transient Voltages	Not record	led during loa	nd study period	Normal	
6	Voltage fluctuations / flicker	Not record	led during loa	Normal		
7	Power factor		-0.65		Leading	
8	Load Current (Waveform)		Sine wav	e	Normal	
9	Load generated disturbances		Absent		Ref. Technical suppliment	
	Harmonic Analysis	Phase	Load (A)	THD (%)		
	THD (V) % (Permissible limits<3%	R	53.74	1.89	Within permissible limit at	
10	as per CEA- Technical standards	Y	53.51	2.22	Average load during load	
	for connectivity to the grid-2007)	В	54.68	2.31	study	
	THD (I) % Permissible limits<8%	R	53.74	4.44	Within permissible limit at	
11	as per CEA- Technical standards	Y	53.51	5.44	Average load during load	
	for connectivity to the grid-2007))	В	54.68	5.52	study	
12	Frequency	50.03			Normal	
13	Reliability of electricity supply	Good			Normal	
14	Earthing		Good		Normal	

	POWEI		ANALYSIS F	REPORT	
			Aluva		
	n & Code:	8.RWPH-3(
Date &				1-03-2020 11:30	
Referen Sl No		Technical	Supplement Summary An	alveic	Remarks
	Category			alysis	
1	Voltage Continuity (Input)		Good		Normal
		R	3.	190kV	
2	RMS Voltage level	Y	3.	253kV	Normal
		В	3.	240kV	
3	Voltage wave forms		Sine way	re	Normal
4	Dips & Swells	Not record	led during loa	ad study period	Normal
5	Transient Voltages	Not record	led during loa	Normal	
6	Voltage fluctuations / flicker	Not record	led during loa	Normal	
7	Power factor		0.64		Low power factor
8	Load Current (Waveform)		Sine way	e	Normal
9	Load generated disturbances		Absent		Ref. Technical suppliment
	Harmonic Analysis	Phase	Load (A)	THD (%)	
	THD (V) % (Permissible limits<3%	R	32.98	1.51	Within permissible limit at
10	as per CEA- Technical standards	Y	30.30	1.30	Average load during load
	for connectivity to the grid-2007)	В	30.36	1.56	study
	THD (I) % Permissible limits<8%	R	32.98	1.04	Within permissible limit at
11	as per CEA- Technical standards	Y	30.30	1.32	Average load during load
	for connectivity to the grid-2007))	В	30.36	1.56	study
12	Frequency		50.01		Normal
13	Reliability of electricity supply	Good			Normal
14	Earthing		Good		Normal

	POWEI	R QUALITY	ANALYSIS F	REPORT		
			Aluva			
	n & Code:	9.RWPH-1(
Date &		11-03-2020 11:33 to 11-03-2020 11:36				
Referer		Technical	Supplement			
Sl No	Category		Summary An	alysis	Remarks	
1	Voltage Continuity (Input)		Good		Normal	
		R	3.	196kV		
2	RMS Voltage level	Y	3.	257kV	Normal	
		В	3.	246kV		
3	Voltage wave forms		Sine wav	e	Normal	
4	Dips & Swells	Not record	led during loa	ad study period	Normal	
5	Transient Voltages	Not record	led during loa	Normal		
6	Voltage fluctuations / flicker	Not record	led during loa	ad study period	Normal	
7	Power factor		0.99		Normal	
8	Load Current (Waveform)		Sine wav	e	Normal	
9	Load generated disturbances		Absent		Ref. Technical suppliment	
	Harmonic Analysis	Phase	Load (A)	THD (%)		
	THD (V) % (Permissible limits<3%	R	29.95	0.95	Within permissible limit at	
10	as per CEA- Technical standards	Y	30.74	1.04	Average load during load	
	for connectivity to the grid-2007)	В	30.29	1.23	study	
	THD (I) % Permissible limits<8%	R	29.95	2.16	Within permissible limit at	
11	as per CEA- Technical standards	Y	30.74	2.05	Average load during load	
	for connectivity to the grid-2007))	В	30.29	2.78	study	
12	Frequency	50.02			Normal	
13	Reliability of electricity supply	Good			Normal	
14	Earthing		Good		Normal	

	POWE	R QUALITY	ANALYSIS F	REPORT	
			Aluva		
	n & Code:	PWPH-2 (P			
Date &				1-03-2020 11:41	
Referen		Technical	Supplement		
Sl No	Category		Summary An	alysis	Remarks
1	Voltage Continuity (Input)		Good		Normal
		R	3.	199kV	-
2	RMS Voltage level	Y	3.	260kV	Normal
		В	3.	248kV	
3	Voltage wave forms		Sine way	e	Normal
4	Dips & Swells	Not record	led during loa	ad study period	Normal
5	Transient Voltages	Not record	led during loa	Normal	
6	Voltage fluctuations / flicker	Not record	led during loa	Normal	
7	Power factor		0.99	Normal	
8	Load Current (Waveform)		Sine way	e	Normal
9	Load generated disturbances		Absent		Ref. Technical suppliment
	Harmonic Analysis	Phase	Load (A)	THD (%)	
	THD (V) % (Permissible limits<3%	R	59.19	1.01	Within permissible limit at
10	as per CEA- Technical standards	Y	60.50	1.10	Average load during load
	for connectivity to the grid-2007)	В	59.24	1.32	study
	THD (I) % Permissible limits<8%	R	59.19	2.83	Within permissible limit at
11	as per CEA- Technical standards	Y	60.50	2.63	Average load during load
	for connectivity to the grid-2007))	В	B 59.24 2.72 study		study
12	Frequency		50.05		Normal
13	Reliability of electricity supply		Good	Normal	
14	Earthing		Good		Normal

	POWE	R QUALITY	ANALYSIS F	REPORT		
			Aluva			
	n & Code:	11.PWPH-1				
Date &				1-03-2020 11:50		
Referen Sl No		Technical	Supplement Summary An	alveic	Remarks	
	Category			alysis		
1	Voltage Continuity (Input)		Good		Normal	
		R	3.	202kV		
2	RMS Voltage level	Y	3.	266kV	Normal	
		В	3.	252kV		
3	Voltage wave forms		Sine way	e	Normal	
4	Dips & Swells	Not record	led during loa	ad study period	Normal	
5	Transient Voltages	Not record	led during loa	ad study period	Normal	
6	Voltage fluctuations / flicker	Not record	led during loa	Normal		
7	Power factor	0.95			Low power factor	
8	Load Current (Waveform)		Sine way	'e	Normal	
9	Load generated disturbances		Absent		Ref. Technical suppliment	
	Harmonic Analysis	Phase	Load (A)	THD (%)		
	THD (V) % (Permissible limits<3%	R	69.94	1.47	Within permissible limit at	
10	as per CEA- Technical standards	Y	70.43	1.25	Average load during load	
	for connectivity to the grid-2007)	В	69.90	1.50	study	
	THD (I) % Permissible limits<8%	R	69.94	1.15	Within permissible limit at	
11	as per CEA- Technical standards	Y	70.43	1.03	Average load during load	
	for connectivity to the grid-2007))	В	69.90	1.47	study	
12	Frequency	49.9			Normal	
13	Reliability of electricity supply		Good		Normal	
14	Earthing		Good		Normal	

	POWE	R QUALITY	ANALYSIS F	REPORT	
			Aluva		
	on & Code:	12.PWPH-1			
Date &				1-03-2020 11:56	
Referen	1	Technical	Supplement		
Sl No	6,5		Summary An	alysis	Remarks
1	Voltage Continuity (Input)		Good		Normal
		R	3.	199kV	
2	RMS Voltage level	Y	3.	261kV	Normal
		В	3.	249kV	
3	Voltage wave forms		Sine way	ve	Normal
4	Dips & Swells	Not record	led during loa	ad study period	Normal
5	Transient Voltages	Not record	led during loa	Normal	
6	Voltage fluctuations / flicker	Not record	led during loa	Normal	
7	Power factor		0.95	Low power factor	
8	Load Current (Waveform)		Sine way	/e	Normal
9	Load generated disturbances		Absent		Ref. Technical suppliment
	Harmonic Analysis	Phase	Load (A)	THD (%)	
	THD (V) % (Permissible limits<3%	R	68.22	1.56	Within permissible limit at
10	as per CEA- Technical standards	Y	70.48	1.21	Average load during load
	for connectivity to the grid-2007)	В	68.14	1.48	study
	THD (I) % Permissible limits<8%	R	68.22	1.05	Within permissible limit at
11		Y	70.48	0.95	Average load during load
	for connectivity to the grid-2007))	B 68.14 1.33 stud		study	
12	Frequency	49.9			Normal
13	Reliability of electricity supply		Good		Normal
14	Earthing		Good		Normal

	POWE	R QUALITY	ANALYSIS R	EPORT		
			A Aluva			
Locatio	on & Code:	13.RWPH-1				
Date 8				1-03-2020 12:09		
Referer		Technical	Supplement			
Sl No	Category		Summary An	alysis	Remarks	
1	Voltage Continuity (Input)		Good		Normal	
		R	3.	197kV		
2	RMS Voltage level	Y	3.	258kV	Normal	
		В	3.	245kV		
3	Voltage wave forms		Sine wav	e	Normal	
4	Dips & Swells	Not record	led during loa	d study period	Normal	
5	Transient Voltages	Not record	led during loa	Normal		
6	Voltage fluctuations / flicker	Not record	led during loa	d study period	Normal	
7	Power factor		-0.99		Leading Power factor	
8	Load Current (Waveform)		Distorte	d	Winding problem	
9	Load generated disturbances		Absent		Ref. Technical suppliment	
	Harmonic Analysis	Phase	Load (A)	THD (%)		
	THD (V) % (Permissible limits<3%	R	29.19	0.99	Within permissible limit at	
10	as per CEA- Technical standards	Y	29.78	1.09	Average load during load	
	for connectivity to the grid-2007)	В	28.55	1.23	study	
	THD (I) % Permissible limits<8%	R	29.19	4.55	Above permissible limit	
11	as per CEA- Technical standards	Y	29.78	5.80	at Average load during	
	for connectivity to the grid-2007))	В	28.55	8.80	load study	
12	Frequency	49.9			Normal	
13	Reliability of electricity supply		Good	Normal		
14	Earthing		Good		Normal	

	POWE	R QUALITY	ANALYSIS F	REPORT		
		KWA	Aluva			
Locatio	on & Code:	14.RWPH-3				
Date & Time 11-03-2020 12:07 to 11-03-2020 12:09						
Referer		Technical	Supplement			
Sl No	Category		Summary An	alysis	Remarks	
1	Voltage Continuity (Input)		Good		Normal	
		R	3.	205kV		
2	RMS Voltage level	Y	3.	268kV	Normal	
		В	3.	255kV		
3	Voltage wave forms		Sine wav	re	Normal	
4	Dips & Swells	Not record	led during loa	ad study period	Normal	
5	Transient Voltages	Not record	led during loa	Normal		
6	Voltage fluctuations / flicker	Not recorded during load study period			Normal	
7	Power factor		0.95		Low power factor	
8	Load Current (Waveform)		Sine wav	e	Normal	
9	Load generated disturbances		Absent		Ref. Technical suppliment	
	Harmonic Analysis	Phase	Load (A)	THD (%)		
	THD (V) % (Permissible limits<3%	R	33.52	0.98	Within permissible limit at	
10	as per CEA- Technical standards	Y	35.24	1.12	Average load during load	
	for connectivity to the grid-2007)	В	33.78	1.26	study	
	THD (I) % Permissible limits<8%	R	33.52	1.19	Within permissible limit at	
11	as per CEA- Technical standards	Y	35.24	1.13	Average load during load	
	for connectivity to the grid-2007))	В	33.78	1.48	study	
12	Frequency	50.01			Normal	
13	Reliability of electricity supply	Good			Normal	
14	Earthing		Good		Normal	

	POWEI	r quality	ANALYSIS F	REPORT		
		KWA	Aluva			
	n & Code:	15.PWPH-2				
Date &				1-03-2020 12:18		
Referen		Technical	Supplement			
Sl No	Category		Summary An	alysis	Remarks	
1	Voltage Continuity (Input)		Good		Normal	
		R	3.	197kV	_	
2	RMS Voltage level	Y	3.	257kV	Normal	
		В	3.	246kV		
3	Voltage wave forms		Sine wav	e	Normal	
4	Dips & Swells	Not record	led during loa	ad study period	Normal	
5	Transient Voltages	Not record	led during loa	Normal		
6	Voltage fluctuations / flicker	Not record	led during loa	Normal		
7	Power factor		0.80		Low power factor	
8	Load Current (Waveform)		Sine way	re	Normal	
9	Load generated disturbances		Absent		Ref. Technical suppliment	
	Harmonic Analysis	Phase	Load (A)	THD (%)		
	THD (V) % (Permissible limits<3%	R	67.71	1.00	Within permissible limit at	
10	as per CEA- Technical standards	Y	70.56	1.11	Average load during load	
	for connectivity to the grid-2007)	В	68.88	1.23	study	
	THD (I) % Permissible limits<8%	R	67.71	0.85	Within permissible limit at	
11	as per CEA- Technical standards	Y	70.56	1.05	Average load during load	
	for connectivity to the grid-2007))	В	68.88	1.13	study	
12	Frequency	50.05			Normal	
13	Reliability of electricity supply		Good		Normal	
14	Earthing		Good		Normal	

	POWE	R QUALITY	ANALYSIS F	REPORT		
			A Aluva			
	n & Code:	120HP to		1 01 2020 11.10		
Date & Referen			Supplement	1-01-2020 11:16		
Sl No	Category	recrimeat	Summary An	alvsis	Remarks	
1	Voltage Continuity (Input)		Good	,	Normal	
		R	3	97.11		
2	RMS Voltage level	Y	3	96.95	Normal	
		В	3	97.20		
3	Voltage wave forms		Sine way	re	Normal	
4	Dips & Swells	Not record	led during loa	ad study period	Normal	
5	Transient Voltages	Not record	led during loa	ad study period	Normal	
6	Voltage fluctuations / flicker	Not record	led during loa	Normal		
7	Power factor	0.85			Low power factor	
8	Load Current (Waveform)		Sine way	e	Normal	
9	Load generated disturbances		Absent		Ref. Technical suppliment	
	Harmonic Analysis	Phase	Load (A)	THD (%)		
	THD (V) % (Permissible limits<3%	R	141.50	1.24	Within permissible limit at	
10	as per CEA- Technical standards	Y	140.37	1.57	Average load during load	
	for connectivity to the grid-2007)	В	140.35	1.82	study	
	THD (I) % Permissible limits<8%	R	141.50	2.01	Within permissible limit at	
11	as per CEA- Technical standards	Y	140.37	2.00	Average load during load	
	for connectivity to the grid-2007))	В	140.35	2.11	study	
12	Frequency	50.056			Normal	
13	Reliability of electricity supply		Good		Normal	
14	Earthing		Good		Normal	

	POWE	R QUALITY	ANALYSIS F	REPORT		
		KWA	Aluva			
Locatio	on & Code:	150HP to	Kizhumad			
Date & Time 21-01-2020 11:08 to 21-01-2020 11:10						
Referen		Technical	Supplement			
Sl No	Category		Summary An	alysis	Remarks	
1	Voltage Continuity (Input)		Good		Normal	
		R	2	29.53		
2	RMS Voltage level	Y	2	28.77	Normal	
		В	2	29.37		
3	Voltage wave forms		Sine way	e	Normal	
4	Dips & Swells	Not record	led during loa	ad study period	Normal	
5	Transient Voltages	Not record	led during loa	Normal		
6	Voltage fluctuations / flicker	Not recorded during load study period			Normal	
7	Power factor		0.98		Normal	
8	Load Current (Waveform)		Sine wav	e	Normal	
9	Load generated disturbances		Absent		Ref. Technical suppliment	
	Harmonic Analysis	Phase	Load (A)	THD (%)		
	THD (V) % (Permissible limits<3%	R	162.50	1.28	Within permissible limit at	
10	as per CEA- Technical standards	Y	157.83	1.49	Average load during load	
	for connectivity to the grid-2007)	В	155.86	1.64	study	
	THD (I) % Permissible limits<8%	R	162.50	0.94	Within permissible limit at	
11	as per CEA- Technical standards	Y	157.83	0.96	Average load during load	
	for connectivity to the grid-2007))	В	155.86	1.00	study	
12	Frequency	49.97			Normal	
13	Reliability of electricity supply	Good			Normal	
14	Earthing		Good		Normal	

this Page is Intentionally Rept Blank

Energy efficiency in utility and process system

Specific Energy Consumption (SEC)

	OTTOTRACTIONS- ENERGY AUDIT					
	Energy Performance Index					
1	Total Production in (MLD)	290				
2	Actual annual production M ³	105850000				
3	Annual Electricity Consumption (kWh)	33452300				
4	Specific Energy Consumption kWh/m ³	0.32				

The Specific Energy Consumption is 0.32 kWh/m³ or it can be read as $3.125 \text{ m}^3/\text{kWh}$ consumed.

This value may be taken as internal bench mark for future reference and improvement. As the common headers are used separate SEC for individual pumps are not taken but combined SEC is established. The SEC established includes auxiliary consumption also.

67

Z Evaluation of energy management system

Energy management policy

There is no written energy policy available. A draft energy management policy is given below. The management may constitute an energy management policy and display the same in the plant to motivate the staff.

KERALA WATER AUTHORITY PH DIVISION, ALUVA ENERGY POLICY

(Draft)

We are committed to optimally utilize various forms of energy in a cost effective manner to effect conservation of energy resources. We are committed to conserve the energy which is a scarce resource with the requisite consistency in the efficiency, effectiveness in the cost involved in the operations and ensuring that production quality and quantity, environment, safety, health of people are maintained. We are also committed to increase the renewable energy share of the total energy we use.

We are also committed to monitor continuously the saving achieved and reduce its specific energy consumption by minimum of 2% every year.

Date -----

Head of the Institution

7.1. Energy management monitoring system

- Energy Management Cell has to be constituted with an objective to revise action plan for energy conservation thereby reducing the production cost.
- Energy conservation tips/ posters are displayed in crucial points.
- Use of renewable energy has to be encouraged.
- Flow meters and energy meters shall be installed in all major pumps. The meter reading shall be recorded in regular frequencies. It is recommended to install meters with communication capability to get real-time energy performance data and monitoring of pump performance.
- Specific Energy Consumption monitoring shall be done regularly by utilizing the data from flow meters and energy meters installed and connected to the on line monitoring system.
- Energy performance data shall be included in the existing online reporting system so that better comparison of plant operation can be done in terms of energy.

7.2. Training to staff responsible for operational and Documentation.

- The staff need to be made more aware of the importance of energy saving and management.
- Log books shall be maintained to record Electricity Consumption and Diesel consumption.
- TOD reading shall be taken and compared with KSEB regularly.

7.3. Renewable Energy

• No renewable energy projects implemented.

Energy Conservation Measures and Recommendations

Energy Audit Report: 2020 71 KWA, Aluva

8.1. Electrical System

- Electrical safety measures have to be implemented.
- As , all pure water and raw water pumps are operating 24hr a day, the scheduling may be done based on the performance test results given in the 5th chapter. The motors with combined efficiency near the design efficiency may be used for regular applications and the lowest performing pumps may be used as standby.
- As per the electrical load studies conducted the capacitance requirement in demand side (motor end) is 1920 kVAR, which may cost around 8 lakhs Rs.
 For PF improvement. This will help increasing the PF to unity and will get incentives for the same. The demand will also come down due to better power factor.
- FCMA starters are used here which are harmonic free, rugged magnetic soft starters for motor starting. FCMA is an acronym for flux compensated magnetic amplifier which is basically a modulated inductive impedance. When connected in series with the motor the FCMA reduces the starting current to a low value. It is advised to switch all the starters to FCMA to save energy as well as to improve Switch gears & starters,
- Sub meters with communication facility shall be implemented for the effective monitoring of energy and water (like SEC)
- Pumping machinery is subjected to wear & tear, erosion and corrosion due to its nature of functioning, and therefore it is vulnerable to failures. Generally, failures or interruptions are mostly attributed to pumping machinery rather than any other component. Therefore, correct operation and timely maintenance and upkeep of pumping stations and pumping machinery are of vital importance. Sudden failures can be avoided by timely inspection, follow up actions on observations of inspection and planned periodical maintenance. Downtime can be reduced by maintaining inventory of fast-moving spare parts. Obviously due attention needs to be paid to all such aspects for efficient and reliable functioning of pumping machinery.

- The carbon emission factor has been taken from the CO2 Baseline Database for the Indian Power Sector User Guide Version 14.0 December 2018 of Central Electricity Authority. The value take for southern grid is 0.83.
- The foundations, descaling of pipes etc. has to be checked regularly for optimizing the efficiency of the pumping system.

OTTOTRACTIONS- ENERGY AUDIT						
Energy Saving Proposal Code EA 581.01						
Energy Saving in Lighting by replacing existing 173 No's T12 Lamps						
to 18W LED Tube						
Existing Scenario						
173 in the facility. During discussion with officer average utility of these fittings are of 80%.	s it is observed that the					
Proposed System						
The existing T12 may be replaced to LED tube	of 18 W in phased					
manner and the savings will be of 67 % (inclusi	ve of improved light					
output and reduced energy consumption)						
Financial Analysis						
Annual working hours (hr)	6570					
No of fittings	173					
Total load (kW)	9.52					
Annual Energy Consumption (kWh)	50011					
Expected Annual Energy saving for replacing all fittings (kWh)	27506					
Cost of Power	6.00					
Annual saving in Lakhs Rs (1st year) 1.65						
Investment required for complete replacements [@Rs 350 per fittings](Lakhs Rs)	0.61					
Simple Pay Back (in Months)	4.40					

Energy saving by replacing the existing 50HP standard efficiency motors with energy efficient IE3 (or higher rated) motor in Tanker pump set

Existing scenario

2 No's 50HP motors are used in Tanker pump set . Both motors are aged and re-winded. Re-winding reduces the efficiency of the motors further.

Proposed system

It is recommended to replace the existing standard efficiency motor with Energy Efficient Motors. Energy Efficient Motors (EEM) IE3 or higher grade delivers efficiency above 90%. There is an increase of energy efficiency in IE3 replacement with standard efficiency motors Energy savings by motor replacement can be worked out by the simple relation, ie. kW savings = kW output x ($1/\eta$ old- $1/\eta$ new), where old and new are the existing and proposed motor efficiency.

Financial Analysis						
Annual working hours (hr)	5840					
No of motors to be replaced.	2					
Total load (kW)	64.2					
Existing efficiency of the motors (%)	77					
Proposed efficiency of the motors (%)	92					
Annual Energy consumption (kWh) (@60% avg utility)	224803					
Expected annual energy saving (kWh)	36653					
Cost of Power	6.00					
Annual saving in Lakhs Rs (1st year)	2.20					
Investment required (Lakhs Rs)[@17000 Rs/kW]	10.91					
Simple Pay Back (in Months)	59.51					

Energy saving by replacing the existing 50HP standard efficiency motors with energy efficient IE3 (or higher rated) motor in WW Pump (Plant 3)

Existing scenario

2 No's 50HP motors are used in WW pump sets in plant No 3. Both motors are aged and re-winded. Re-winding reduces the efficiency of the motors further.

Proposed system

It is recommended to replace the existing standard efficiency motor with Energy Efficient Motors. Energy Efficient Motors (EEM) IE3 or higher grade delivers efficiency above 90%. There is an increase of energy efficiency in IE3 replacement with standard efficiency motors Energy savings by motor replacement can be worked out by the simple relation, ie. kW savings = kW output x ($1/\eta$ old- $1/\eta$ new), where old and new are the existing and proposed motor efficiency.

proposed motor enciency.						
Financial Analysis						
Annual working hours (hr)	5840					
No of motors to be replaced.	2					
Total load (kW)	69.4					
Existing efficiency of the motors (%)	77					
Proposed efficiency of the motors (%)	92					
Annual Energy consumption (kWh) (@60% avg utility)	243101					
Expected annual energy saving (kWh)	39636					
Cost of Power	6.00					
Annual saving in Lakhs Rs (1st year)	2.38					
Investment required (Lakhs Rs)[@17000 Rs/kW]	11.79					
Simple Pay Back (in Months)	59.51					

Energy saving by replacing the existing 20HP standard efficiency motors with energy efficient IE3 (or higher rated) motor in WW Pump set (Plant 4)

Existing scenario

2 No's 20HP motors are used in WW pump sets in plant No 4. Both motors are aged and re-winded. Re-winding reduces the efficiency of the motors further.

Proposed system

It is recommended to replace the existing standard efficiency motor with Energy Efficient Motors. Energy Efficient Motors (EEM) IE3 or higher grade delivers efficiency above 90%. There is an increase of energy efficiency in IE3 replacement with standard efficiency motors Energy savings by motor replacement can be worked out by the simple relation, ie. kW savings = kW output x ($1/\eta$ old- $1/\eta$ new), where old and new are the existing and proposed motor efficiency.

Financial Analysis							
Annual working hours (hr)	5840						
No of motors to be replaced.	2						
Total load (kW)	25.1						
Existing efficiency of the motors (%)	77						
Proposed efficiency of the motors (%)	92						
Annual Energy consumption (kWh) (@60% avg utility)	87830						
Expected annual energy saving (kWh)	14320						
Cost of Power	6.00						
Annual saving in Lakhs Rs (1st year)	0.86						
Investment required (Lakhs Rs)[@17000 Rs/kW]	4.26						
Simple Pay Back (in Months)	59.51						

Energy saving by replacing the existing 20HP standard efficiency motors with energy efficient IE3 (or higher rated) motor in Blowers

Existing scenario

4 No's 20HP motors are used in Blowers of plant No 3 & 4. all motors are aged and re-winded. Re-winding reduces the efficiency of the motors further.

Proposed system

It is recommended to replace the existing standard efficiency motor with Energy Efficient Motors. Energy Efficient Motors (EEM) IE3 or higher grade delivers efficiency above 90%. There is an increase of energy efficiency in IE3 replacement with standard efficiency motors Energy savings by motor replacement can be worked out by the simple relation, ie. kW savings = kW output x ($1/\eta$ old- $1/\eta$ new), where old and new are the existing and proposed motor efficiency.

Financial Analysis						
Annual working hours (hr)	5840					
No of motors to be replaced.	4					
Total load (kW)	48.9					
Existing efficiency of the motors (%)	77					
Proposed efficiency of the motors (%)	92					
Annual Energy consumption (kWh) (@60% avg utility)	171477					
Expected annual energy saving (kWh)	27958					
Cost of Power	6.00					
Annual saving in Lakhs Rs (1st year)	1.68					
Investment required (Lakhs Rs)[@17000 Rs/kW]	8.32					
Simple Pay Back (in Months)	59.51					

	Energy Saving Calculation						
Energ	y Effic	ienc	y in Existing Pumping system	by replacing	g inefficient	motor(RW1-	
			HT1)	1	–	1	
	Sl No		Description	Unit	Existing System	New System	
		1	Total number of motors to be replaced	1	Standard	IE2	
s.	Motors	2	Rated load of the motor	kW	210	200	
eter	Mot	3	Efficiency of standard motor	%	84.3	90	
ame		4	Type of Motor		Standard	IE2	
Parameters		5	Motor power	kW	210.00	118.70	
L LS		6	Efficiency	%	87	90	
Design		7	Combined efficiency of the system (rated)	%	73	81	
		8	Combined efficiency of the system (measured)	%	59	81	
		9	Head	m	22	23	
		10	Flow	m³/s	0.447	0.447	
		11	Density of water	kg/m ³	1000	1000	
			12	Gravitational Constant	m/s ²	9.81	9.81
		13	Hydraulic Power	kW	96.53	100.92	
		14	Total Electrical Power drawn	kW	163.00	118.70	
		15	Unit Cost	Rs./kWh	6	6	
		16	Annual operating Hours	Hours	8760	8760	
		17	Annual energy consumption	kWh/year	1427880	1039812	
		18	Annual power Savings, kWh	kWh		388068	
	Ħ	19	Annual Savings	Rs. In Lakhs		23.28	
	ndul	20	Investment for Pumps (as per KWA guideline @15525 per hp)	Rs/kW		20500	
		21	Proposed pump load	kW		200.00	
		22	Investment	Rs. In Lakhs		41.00	
		23	Simple Payback period	Months		21.13	

Energy Saving Calculation							
Ener	gy Effic	ciency	y in Existing Pumping system	by replacing	inefficient mo	tor (RW2-LT1)	
	Sl No		Description	Unit	Old System	New System	
ي ک		1	Total number of motors to be replaced	1	Standard	IE2	
eter	ors	2	Rated load of the motor	kW	130	130	
Design Parameters	Motors	3	Efficiency of standard motor	%	92	90	
)ar		4	Type of Motor		Standard	IE2	
- L2		5	Motor power	kW	130.00	110.70	
esig		6	Efficiency	%	86	90	
De		7	Combined efficiency of the system (rated)	%	79	81.00	
		8	Combined efficiency of the system (measured)	%	69	81.00	
		9	Head	m	22	22	
		10	Flow	m³/s	0.340	0.340	
		11	Density of water	kg/m ³	1000	1000	
		12	Gravitational Constant	m/s ²	9.81	9.81	
		13	Hydraulic Power	kW	73.38	73.38	
		14	Total Electrical Power drawn	kW	130.00	110.70	
		15	Unit Cost	Rs./kWh	6	6	
		16	Annual operating Hours	Hours	8760	8760	
		17	Annual energy consumption	kWh/year	1138800	969732	
		18	Annual power Savings, kWh	kWh		169068	
	It	19	Annual Savings	Rs. In Lakhs		10.14	
	Input	20	Investment for Pumps (as per KWA guideline @15525 per hp)	Rs/kW		20500	
		21	Proposed pump load	kW		130.00	
		22	Investment	Rs. In Lakhs		26.65	
		23	Simple Payback period	Months		31.53	

Energy Saving Calculation

	Energy Saving Calculation								
Energy	Energy Efficiency in Existing Pumping system by replacing inefficient motor (RW2-								
			LT2)						
	5l No		Description	Unit	Old System	New System			
		1	Total number of motors to be	1	Standard	IE2			
ers	Ņ		replaced	1.14	450	110			
Parameters	Motors	-	Rated load of the motor	kW	150	110			
ran			Efficiency of standard motor	%	75	90			
Pa		4	Type of Motor		Standard	IE2			
Design		5	Motor power	kW	150.00	124.10			
esi		6	Efficiency	%	75	90			
		7	Combined efficiency of the system (rated)	%	72.000	81.00			
		8	Combined efficiency of the system (measured)	%	67.000	81.00			
		9	Head	m		0			
		10	Flow	m³/s		0.330			
		11	Density of water	kg/m ³	1000	1000			
		12	Gravitational Constant	m/s²	9.81	9.81			
		13	Hydraulic Power	kW	0.00	0.00			
		14	Total Electrical Power drawn	kW	150.00	124.10			
		15	Unit Cost	Rs./kWh	6	6			
		16	Annual operating Hours	Hours	8760	8760			
		17	Annual energy consumption	kWh/year	1314000	1087116			
		18	Annual power Savings, kWh	kWh		226884			
	L L	19	Annual Savings	Rs. In Lakhs		13.61			
	ndul	20	Investment for Pumps (as per KWA guideline @15525 per hp)	Rs/kW		20500			
		21	Proposed pump load	kW		110.00			
		22	Investment	Rs. In Lakhs		22.55			
		23	Simple Payback period	Months		19.88			

	Energy Saving Calculation								
Energ	Energy Efficiency in Existing Pumping system by replacing inefficient motor (RW2- LT4)								
	Sl No		Description	Unit	Old System	New System			
s.		1	Total number of motors to be replaced	1	Standard	IE2			
eter	ors	2	Rated load of the motor	kW	150	110			
ame	Motors	3	Efficiency of standard motor	%	90	90			
Pari	_	4	Type of Motor		Standard	IE2			
5		5	Motor power	kW	150.00	1.04			
Design Parameters		6	Efficiency	%	80	90			
Ď		7	Combined efficiency of the system (rated)		0.720	0.81			
		8	Combined efficiency of the system (measured)		0.560	0.81			
		9	Head	m		0			
		10	Flow	m³/s	0.280	0.280			
		11	Density of water	kg/m ³	1000	1000			
			12	Gravitational Constant	m/s ²	9.81	9.81		
		13	Hydraulic Power	kW	0.00	0.00			
		14	Total Electrical Power drawn	kW	150.00	103.70			
		15	Unit Cost	Rs./kWh	6	6			
		16	Annual operating Hours	Hours	8760	8760			
		17	Annual energy consumption	kWh/year	1314000	908412			
		18	Annual power Savings, kWh	kWh		405588			
	t t	19	Annual Savings	Rs. In Lakhs		24.34			
	ndul	20	Investment for Pumps (as per KWA guideline @15525 per hp)	Rs/kW		20500			
		21	Proposed pump load	kW		110.00			
		22	Investment	Rs. In Lakhs		22.55			
		23	Simple Payback period	Months		11.12			

Energy Saving Calculation								
Energ	y Effici	ienc	y in Existing Pumping system	by replacin	g inefficient	motor(RW3-		
HT1)								
S	Sl No		Description	Unit	Old System	New System		
s		1	Total number of motors to be replaced	1	Standard	IE2		
Design Parameters	ors	2	Rated load of the motor	kW	200	180		
ame	Motors	3	Efficiency of standard motor	%	82	90		
ara	Ĕ	4	Type of Motor		Standard	IE2		
L L		5	Motor power	kW	200.00	133.30		
esig		6	Efficiency	%	85	90		
D		7	Combined efficiency of the system (rated)		0.697	0.81		
		8	Combined efficiency of the system (measured)		0.540	0.81		
		9	Head	m	27.3	27.3		
		10	Flow	m³/s	0.270	0.270		
		11	Density of water	kg/m ³	1000	1000		
		12	Gravitational Constant	m/s ²	9.81	9.81		
		13	Hydraulic Power	kW	72.31	72.31		
		14	Total Electrical Power drawn	kW	200.00	133.30		
		15	Unit Cost	Rs./kWh	6	6		
		16	Annual operating Hours	Hours	8760	8760		
		17	Annual energy consumption	kWh/year	1752000	1167708		
		18	Annual power Savings, kWh	kWh		584292		
	L H	19	Annual Savings	Rs. In Lakhs		35.06		
	ndul	20	Investment for Pumps (as per KWA guideline @15525 per hp)	Rs/kW		20500		
		21	Proposed pump load	kW		180.00		
		22	Investment	Rs. In Lakhs		36.90		
		23	Simple Payback period	Months		12.63		

	Energy Saving Calculation								
En	Energy Efficiency in Existing Pumping system by replacing inefficient motor								
			(RW3-HT2)						
	Sl No		Description	Unit	Old System	New System			
		1	Total number of motors to be	1	Ctore doub	15.2			
ې		1	replaced	1	Standard	IE2			
Parameters	Motors	2	Rated load of the motor	kW	200	180			
a u	Mot	3	Efficiency of standard motor	%	82	90			
Para		4	Type of Motor		Standard	IE2			
5		5	Motor power	kW	200.00	146.90			
Design		6	Efficiency	%	85	90			
Ď		7	Combined efficiency of the	%	0.697	0.81			
		<i>'</i>	system (rated)	/0	0.037	0.01			
		8	Combined efficiency of the	%	0.595	0.81			
		-	system (measured)	/0					
		9	Head	m	23	23			
		10	Flow	m ³ /s	0.330	0.330			
		11	Density of water	kg/m ³	1000	1000			
		12	Gravitational Constant	m/s ²	9.81	9.81			
		13	Hydraulic Power	kW	74.46	74.46			
		14	Total Electrical Power drawn	kW	200.00	146.90			
		15	Unit Cost	Rs./kWh	6	6			
		16	Annual operating Hours	Hours	8760	8760			
		17	Annual energy consumption	kWh/year	1752000	1286844			
		18	Annual power Savings, kWh	kWh		465156			
	t I	19	Annual Savings	Rs. In Lakhs		27.91			
	ndul	20	Investment for Pumps (as per KWA guideline @15525 per hp)	Rs/kW		20500			
		21	Proposed pump load	kW		180.00			
		22	Investment	Rs. In Lakhs		36.90			
		23	Simple Payback period	Months		15.87			

Energy Saving Calculation								
Energ	y Effici	ienc	cy in Existing Pumping system	by replacin	g inefficient	motor(RW3-		
	HT3)							
S	Sl No		Description	Unit	Old System	New System		
s		1	Total number of motors to be replaced	1	Standard	IE2		
Parameters	Motors	2	Rated load of the motor	kW	200	180		
ame	Mot	3	Efficiency of standard motor	%	82	90		
ara		4	Type of Motor		Standard	IE2		
		5	Motor power	kW	200.00	121.50		
Design		6	Efficiency	%	85	90		
Ď		7	Combined efficiency of the system (rated)	%	0.697	0.81		
		8	Combined efficiency of the system (measured)	%	0.492	0.81		
		9	Head	m	21	21		
		10	Flow	m³/s	0.440	0.440		
		11	Density of water	kg/m ³	1000	1000		
			12	Gravitational Constant	m/s ²	9.81	9.81	
		13	Hydraulic Power	kW	90.64	90.64		
		14	Total Electrical Power drawn	kW	200.00	121.50		
		15	Unit Cost	Rs./kWh	6	6		
		16	Annual operating Hours	Hours	8760	8760		
		17	Annual energy consumption	kWh/year	1752000	1064340		
		18	Annual power Savings, kWh	kWh		687660		
	Ħ	19	Annual Savings	Rs. In Lakhs		41.26		
	ndul	20	Investment for Pumps (as per KWA guideline @15525 per hp)	Rs/kW		20500		
		21	Proposed pump load	kW		180.00		
		22	Investment	Rs. In Lakhs		36.90		
		23	Simple Payback period	Months		10.73		

	Energy Saving Calculation						
Energy Efficiency in Existing Pumping system by replacing inefficient motor(PW1-							
HT1)							
5	Sl No		Description	Unit	Old System	New System	
		1	Total number of motors to be	1	C1 1 1		
			replaced	1	Standard	IE2	
rs	Motors	2	Rated load of the motor	kW	375	315	
Parameters	Mot	3	Efficiency of standared motor	%	82	90	
am		4	Type of Motor		Standard	IE2	
Par		5	Motor power	kW	378.00	241.70	
5		6	Efficiency	%	85	90	
Design	đ	7	Combined efficiency of the		0.518	0.81	
	Pump	,	system (Measured)		0.510	0.01	
		8	Combined efficiency of the		0.697	0.81	
		-	system (Rated)				
			Head	m	63	63	
		10	Flow	m³/s	0.317	0.317	
		11	Density of water	kg/m³	1000	1000	
		12	Gravitational Constant	m/s ²	9.81	9.81	
		13	Hydrouling Power	kW	195.72	195.72	
		14	Total Electrical Power drawn	kW	378.00	241.70	
		15	Unit Cost	Rs./kWh	6	6	
		16	Annual operating Hours	Hours	8760	8760	
			Annual energy consumption	kWh/year	3311280	2117292	
		18	Annual power Savings, kWh	kWh		1193988	
	ц	19	Annual Savings	Rs. In Lakhs		71.64	
	Input	20	Investment for Pumps (as per kWA guideline @15525 per hp)	Rs/kW		20500	
		21	Proposed pump load	kW		315.00	
		22	Investment	Rs. In Lakhs		64.58	
		23	Simple Payback period	Months		10.82	

Energy Saving Calculation							
Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW1- HT2)							
SI No			Description	Unit	Old System	New System	
	Motors	1	Total number of motors to be replaced	1	Standard	IE2	
ş		2	Rated load of the motor	kW	375	315	
etei	Mot	3	Efficiency of standared motor	%	82	90	
ame	-	4	Type of Motor		Standard	IE2	
Para		5	Motor power	kW	370.00	236.20	
L L		6	Efficiency	%	85	90	
Design Parameters		7	Combined efficiency of the system (Measured)		0.517	0.81	
		8	Combined efficiency of the system (Rated)		0.697	0.81	
		9	Head	m	63	63	
		10	Flow	m ³ /s	0.310	0.310	
		11	Density of water	kg/m ³	1000	1000	
		12	Gravitational Constant	m/s ²	9.81	9.81	
		13	Hydrouling Power	kW	191.58	191.58	
	Input	14	Total Electrical Power drawn	kW	370.00	236.20	
		15	Unit Cost	Rs./kWh	6	6	
		16	Annual operating Hours	Hours	8760	8760	
		17	Annual energy consumption	kWh/year	3241200	2069112	
			Annual power Savings, kWh	kWh		1172088	
		19	Annual Savings	Rs. In Lakhs		70.33	
		20	Investment for Pumps (as per kWA guideline @15525 per hp)	Rs/kW		20500	
		21	Proposed pump load	kW		315.00	
		22	Investment	Rs. In Lakhs		64.58	
		23	Simple Payback period	Months		11.02	

Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW1- HT6)							
Sl No			Description	Unit	Old System	New System	
	Motors	1	Total number of motors to be replaced	1	Standard	IE2	
5		2	Rated load of the motor	kW	160	90	
Parameters	Mot	3	Efficiency of standared motor	%	82	90	
an		4	Type of Motor		Standard	IE2	
Par		5	Motor power	kW	142.00	72.10	
		6	Efficiency	%	85	90	
Design		7	Combined efficiency of the system (Measured)		0.411	0.81	
		8	Combined efficiency of the system (Rated)		0.697	0.81	
		9	Head	m	50	50	
		10	Flow	m ³ /s	0.120	0.120	
		11	Density of water	kg/m³	1000	1000	
		12	Gravitational Constant	m/s ²	9.81	9.81	
		13	Hydrouling Power	kW	58.86	58.86	
		14	Total Electrical Power drawn	kW	142.00	72.10	
	lnput	15	Unit Cost	Rs./kWh	6	6	
		16	Annual operating Hours	Hours	8760	8760	
		17	Annual energy consumption	kWh/year	1243920	631596	
		18	Annual power Savings, kWh	kWh		612324	
		Input	19	Annual Savings	Rs. In Lakhs		36.74
			20	Investment for Pumps (as per kWA guideline @15525 per hp)	Rs/kW		20500
		21	Proposed pump load	kW		90.00	
		22	Investment	Rs. In Lakhs		18.45	
		23	Simple Payback period	Months		6.03	

_	Energy Saving Calculation						
Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW2- HT1)							
SI No			Description	Unit	Old System	New System	
		1	Total number of motors to be replaced	1	Standard	IE2	
د ۲	Motors	2	Rated load of the motor	kW	350	315	
ete	Mot	3	Efficiency of standared motor	%	85	90	
am	_	4	Type of Motor		Standard	IE2	
Par		5	Motor power	kW	331.00	255.40	
		6	Efficiency	%	75	90	
Design Parameters		7	Combined efficiency of the system (Measured)		0.625	0.81	
		8	Combined efficiency of the system (Rated)		0.638	0.81	
		9	Head	m	44	44	
		10	Flow	m ³ /s	0.480	0.480	
		11	Density of water	kg/m ³	1000	1000	
		12	Gravitational Constant	m/s ²	9.81	9.81	
		13	Hydrouling Power	kW	207.19	207.19	
		14	Total Electrical Power drawn	kW	331.00	255.40	
		15	Unit Cost	Rs./kWh	6	6	
		16	Annual operating Hours	Hours	8760	8760	
		17	Annual energy consumption	kWh/year	2899560	2237304	
		18	Annual power Savings, kWh	kWh		662256	
	Ŧ	19	Annual Savings	Rs. In Lakhs		39.74	
	Input	20	Investment for Pumps (as per kWA guideline @15525 per hp)	Rs/kW		20500	
		21	Proposed pump load	kW		315.00	
		22	Investment	Rs. In Lakhs		64.58	
			Simple Payback period	Months		19.50	

Energy Saving Calculation							
Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW2-							
HT3)							
Sl No			Description	Unit	Old System	New System	
	ors	1	Total number of motors to be replaced	1	Standard	IE2	
ပ္		2	Rated load of the motor	kW	350	315	
Parameters	Motors	3	Efficiency of standared motor	%	85	90	
m a	~	4	Type of Motor		Standard	IE2	
ara		5	Motor power	kW	310.00	202.50	
		6	Efficiencyof Pump	%	75	90	
Design		7	Combined efficiency of the system (Measured)		0.529	0.81	
		8	Combined efficiency of the system (Rated)		0.638	0.81	
		9	Head	m	44	44	
		10	Flow	m ³ /s	0.380	0.380	
		11	Density of water	kg/m ³	1000	1000	
		12	Gravitational Constant	m/s ²	9.81	9.81	
		13	Hydrouling Power	kW	164.02	164.02	
		14	Total Electrical Power drawn	kW	310.00	202.50	
		15	Unit Cost	Rs./kWh	6	6	
		16	Annual operating Hours	Hours	8760	8760	
		17	Annual energy consumption	kWh/year	2715600	1773900	
		18	Annual power Savings, kWh	kWh		941700	
	It	19	Annual Savings	Rs. In Lakhs		56.50	
	lnput	20	Investment for Pumps (as per kWA guideline @15525 per hp)	Rs/kW		20500	
		21	Proposed pump load	kW		315.00	
			Investment	Rs. In Lakhs		64.58	
		23	Simple Payback period	Months		13.71	

	Energy Saving Calculation								
Energy	/ Effici	enc	y in Existing Pumping system	by replacing	g inefficient	motor (PW3-			
	HT3)								
S	il No		Description	Unit	Old System	New System			
		1	Total number of motors to be replaced	1	Standard	IE2			
ပ္ပ	Motors	2	Rated load of the motor	kW	350	315			
eter	dot	3	Efficiency of standared motor	%	85	90			
am(~	4	Type of Motor		Standard	IE2			
Parameters		5	Motor power	kW	310.00	202.50			
		6	Efficiencyof Pump	%	75	90			
Design		7	Combined efficiency of the system (Measured)		0.529	0.81			
		8	Combined efficiency of the system (Rated)		0.638	0.81			
		9	Head	m	44	44			
		10	Flow	m ³ /s	0.380	0.380			
		11	Density of water	kg/m ³	1000	1000			
		12	Gravitational Constant	m/s ²	9.81	9.81			
		13	Hydrouling Power	kW	164.02	164.02			
		14	Total Electrical Power drawn	kW	310.00	202.50			
		15	Unit Cost	Rs./kWh	6	6			
		16	Annual operating Hours	Hours	8760	8760			
		17	Annual energy consumption	kWh/year	2715600	1773900			
		18	Annual power Savings, kWh	kWh		941700			
	ut	19	Annual Savings	Rs. In Lakhs		56.50			
	lnpu	20	Investment for Pumps (as per kWA guideline @15525 per hp)	Rs/kW		20500			
		21	Proposed pump load	kW		315.00			
		22	Investment	Rs. In Lakhs		64.58			
		23	Simple Payback period	Months		13.71			

	Energy Saving Calculation							
	Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW3-HT4)							
S	l No)	Description	Unit	Old System	New System		
		1	Total number of motors to be replaced	1	Standard	IE2		
Ņ	Ņ	2	Rated load of the motor	kW	320	250		
eter	Motors	3	Efficiency of standared motor	%	90	90		
Parameters	Δ	4	Type of Motor		Standard	IE2		
		5	Motor power	kW	200.00	176.30		
Design		6	Efficiency	%	88.5	90		
Ō		7	Combined efficiency of the system (Measured)		0.714	0.81		
		8	Combined efficiency of the system (Rated)		0.797	0.81		
		9	Head	m	28	28		
		10	Flow	m ³ /s	0.520	0.520		
		11	Density of water	kg/m ³	1000	1000		
		12	Gravitational Constant	m/s ²	9.81	9.81		
		13	Hydrouling Power	kW	142.83	142.83		
		14	Total Electrical Power drawn	kW	200.00	176.30		
		15	Unit Cost	Rs./kWh	6	6		
		16	Annual operating Hours	Hours	8760	8760		
		17	Annual energy consumption	kWh/year	1752000	1544388		
	Input	18	Annual power Savings, kWh	kWh		207612		
	lnp	19	Annual Savings	Rs. In Lakhs	5	12.46		
		20	Investment for Pumps (as per KWA guideline @15525.per.hp)	Rs/kW		20500		
		21	Proposed pump load	kW		250.00		
		22	Investment	KS. IN Lakhs		51.25		
		23	Simple Payback period	Months		49.37		

	Energy Saving Calculation						
Ene	ergy	Eff	iciency in Existing Pumping system	by replacin	g inefficient	motor (PW3-	
S	l No)	Description	Unit	Old System	New System	
		1	Total number of motors to be replaced	1	Standard	IE2	
S	Motors	2	Rated load of the motor	kW	350	250	
etel	Mot	3	Efficiency of standared motor	%	90	90	
Parameters		4	Type of Motor		Standard	IE2	
Par		5	Motor power	kW	200.00	166.20	
ng L		6	Efficiency	%	88.5	90	
Design		7	Combined efficiency of the system (Measured)		0.673	0.81	
		8	Combined efficiency of the system (Rated)		0.797	0.81	
		9	Head	m	28	28	
		10	Flow	m ³ /s	0.497	0.497	
		11	Density of water	kg/m ³	1000	1000	
		12	Gravitational Constant	m/s ²	9.81	9.81	
		13	Hydrouling Power	kW	136.52	136.52	
		14	Total Electrical Power drawn	kW	200.00	166.20	
		15	Unit Cost	Rs./kWh	6	6	
		16	Annual operating Hours	Hours	8760	8760	
		17	Annual energy consumption	kWh/year	1752000	1455912	
	It	18	Annual power Savings, kWh	kWh		296088	
	Input		Annual Savings	Rs. In Lakhs		17.77	
	-	20	Investment for Pumps (as per kWA guideline @15525 per hp)	Rs/kW		20500	
		21	Proposed pump load	kW		250.00	
		22	Investment	Rs. In Lakhs		51.25	
		23	Simple Payback period	Months		34.62	

	Energy Saving Calculation						
Ene	ergy	Eff	ficiency in Existing Pumping system by re	eplacing inef	fficient moto	r (PW3-HT5)	
S	il No)	Description	Unit	Old System	New System	
		1	Total number of motors to be replaced	1	Standard	IE2	
rs	รา	2	Rated load of the motor	kW	350	250	
ete	Motors	3	Efficiency of standared motor	%	90	90	
Parameters	Σ	4	Type of Motor		Standard	IE2	
Par		5	Motor power	kW	202.00	167.80	
		6	Efficiency	%	88.5	90	
Design		7	Combined efficiency of the system		0.673	0.81	
Ď		/	(Measured)		0.075	0.01	
		8	Combined efficiency of the system (Rated)		0.797	0.81	
		9	Head	m	28	28	
		10	Flow	m³/s	0.451	0.451	
		11	Density of water	kg/m ³	1000	1000	
		12	Gravitational Constant	m/s²	9.81	9.81	
		13	Hydrouling Power	kW	123.88	123.88	
		14	Total Electrical Power drawn	kW	202.00	167.80	
		15	Unit Cost	Rs./kWh	6	6	
		16	Annual operating Hours	Hours	8760	8760	
		17	Annual energy consumption	kWh/year	1769520	1469928	
	Ŀ	18	Annual power Savings, kWh	kWh		299592	
	Input	19	Annual Savings	Rs. In Lakhs		17.98	
	=	20	Investment for Pumps (as per kWA	Rs/kW		20500	
		20	guideline @15525 per hp)	N3/ NV		20300	
		21	Proposed pump load	kW		250.00	
		22	Investment	Rs. In Lakhs		51.25	
		23	Simple Payback period	Months		34.21	

.

	Energy Saving Calculation						
Ene	ergy	Eff	iciency in Existing Pumping system	by replacing	inefficient	motor (PW3-	
S	Sl No Description Unit Old System			New System			
		1	Total number of motors to be replaced	1	Standard	IE2	
ι,	Motors	2	Rated load of the motor	kW	110	55	
eter	٨ot	3	Efficiency of standared motor	%	90	90	
Parameters	~	4	Type of Motor		Standard	IE2	
Para		5	Motor power	kW	107.00	50.10	
5		6	Efficiency	%	88.5	90	
Design		7	Combined efficiency of the system (Measured)		0.379	0.81	
		8	Combined efficiency of the system (Rated)		0.797	0.81	
		9	Head	m	60	60	
		10	Flow	m³/s	0.069	0.069	
		11	Density of water	kg/m ³	1000	1000	
		12	Gravitational Constant	m/s ²	9.81	9.81	
		13	Hydrouling Power	kW	40.55	40.55	
		14	Total Electrical Power drawn	kW	107.00	50.10	
		15	Unit Cost	Rs./kWh	6	6	
		16	Annual operating Hours	Hours	8760	8760	
			Annual energy consumption	kWh/year	937320	438876	
	ıt	18	Annual power Savings, kWh	kWh		498444	
	Input		Annual Savings	Rs. In Lakhs		29.91	
		20	Investment for Pumps (as per kWA guideline @15525 per hp)	Rs/kW		20500	
		21	Proposed pump load	kW		55.00	
		22	Investment	Rs. In Lakhs		11.28	
		23	Simple Payback period	Months		4.52	

	Energy Saving Calculation							
Ene	rgy	Eff	iciency in Existing Pumping system	by replacing				
S	l No)	Description	Unit	Old System	New System		
		1	Total number of motors to be	1	Standard	IE2		
			replaced		Standard			
LS	Motors	2	Rated load of the motor	kW	90	75		
Parameters	Moi	3	Efficiency of standared motor	%	85	90		
am		4	Type of Motor		Standard	IE2		
Par		5	Motor power	kW	83.00	73.60		
Design		6	Efficiency	%	84.5	90		
esig		7	Combined efficiency of the system		0.67	0.81		
Ō		,	(Measured)		0.07	0.01		
		8	Combined efficiency of the system		0.718	0.81		
			(Rated)					
		9	Head	m	54	54		
		10	Flow	m³/s	0.105	0.105		
		11	Density of water	kg/m ³	1000	1000		
		12	Gravitational Constant	m/s ²	9.81	9.81		
		13	Hydrouling Power	kW	55.62	55.62		
		14	Total Electrical Power drawn	kW	83.00	73.60		
		15	Unit Cost	Rs./kWh	6	6		
		16	Annual operating Hours	Hours	8760	8760		
		17	Annual energy consumption	kWh/year	727080	644736		
	It	18	Annual power Savings, kWh	kWh		82344		
	Input	19	Annual Savings	Rs. In Lakhs		4.94		
	-	20	Investment for Pumps (as per kWA	Rs/kW		20500		
			guideline @15525 per hp)					
		21	Proposed pump load	kW		75.00		
		22	Investment	Rs. In Lakhs		15.38		
		23	Simple Payback period	Months		37.34		

OTTOTRACTIONS- ENERGY AUDIT KWA PUMPING STATION, ALUVA									
	Greenhouse Gas Mitigation through Major Energy Efficiency Projects								
Sl No	Projects	Energy saved(Yearly)		Sustainability (Years)	First year ton of CO2 mitigated	Expected Tons of CO2 mitigated through out life cycle			
		(kWh)	MWh	Years	<u> </u>	ш́с			
1	Energy Saving in Lighting by replacing existing 173 No's T12 Lamps to 18W LED Tube	27506	27.51	10	20.08	200.79			
2	Energy saving by replacing the existing 50HP standard efficiency motors with energy efficient IE3 (or higher rated) motor in Minirator	36653	36.65	10	26.76	267.56			
3	Energy saving by replacing the existing 50HP standard efficiency motors with energy efficient IE3 (or higher rated) motor in Minirator	39636	39.64	10	28.93	289.34			
4	Energy saving by replacing the existing 20HP standard efficiency motors with energy efficient IE3 (or higher rated) motor in Minirator	14320	14.32	10	10.45	104.54			
5	Energy saving by replacing the existing 20HP standard efficiency motors with energy efficient IE3 (or higher rated) motor in Minirator	27958	27.96	10	20.41	204.10			
6	Energy Efficiency in Existing Pumping system by replacing inefficient motor(RW1-HT1)	388068	388.07	10	283.29	2832.90			
7	Energy Efficiency in Existing Pumping system by replacing inefficient motor(RW1-HT3)	491436	491.44	10	358.75	3587.48			
8	Energy Efficiency in Existing Pumping system by replacing inefficient motor (RW2-LT1)	169068	169.07	10	123.42	1234.20			
9	Energy Efficiency in Existing Pumping system by replacing inefficient motor (RW2-LT2)	226884.0	226.88	10	165.63	1656.25			
10	Energy Efficiency in Existing Pumping system by replacing inefficient motor (RW2-LT4)	405588.00	405.59	10	296.08	2960.79			
11	Energy Efficiency in Existing Pumping system by replacing inefficient motor(RW3-HT1)	584292.00	584.29	10	426.53	4265.33			
12	Energy Efficiency in Existing Pumping system by replacing inefficient motor (RW3-HT2)	465156.00	465.16	10	339.56	3395.64			
			Ene	rgv Au	dit Report	2020 96			

Energy Audit Report: 2020 96 KWA, Aluva

13	Energy Efficiency in Existing Pumping system by replacing inefficient motor(RW3-HT3)	687660.00	687.66	10	501.99	5019.92
14	Energy Efficiency in Existing Pumping system by replacing inefficient motor(PW1-HT1)	1193988.00	1193.99	10	871.61	8716.11
15	Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW1-HT2)	1172088.00	1172.09	10	855.62	8556.24
16)Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW1-HT6)	612324.00	612.32	10	447.00	4469.97
17	Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW2-HT1)	662256.00	662.26	10	483.45	4834.47
18	Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW2-HT3)	941700.00	941.70	10	687.44	6874.41
19	Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW3-HT3)	941700.00	941.70	10	687.44	6874.41
20	Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW3-HT4)	207612.00	207.61	10	151.56	1515.57
21	Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW3-HT4)	296088.00	296.09	10	216.14	2161.44
22	Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW3-HT5)	299592.00	299.59	10	218.70	2187.02
23	Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW3-LT1)	498444.00	498.44	10	363.86	3638.64
24	Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW3-LT5)	82344.00	82.34	10	60.11	601.11

OTTOTRACTIONS- ENERGY AUDIT								
	Implementation Schedule KWA PUMPING STATION, ALUVA							
Sl No	Projects	SPB	Implementation Schedule					
1	Energy Saving in Lighting by replacing existing 173 No's T12 Lamps to 18W LED Tube	4.40	Short Term					
2	Energy saving by replacing the existing 50HP standard efficiency motors with energy efficient IE3 (or higher rated) motor in Minirator	59.51	Medium Term					
3	Energy saving by replacing the existing 50HP standard efficiency motors with energy efficient IE3 (or higher rated) motor in Minirator	59.51	Medium Term					
4	Energy saving by replacing the existing 20HP standard efficiency motors with energy efficient IE3 (or higher rated) motor in Minirator	59.51	Medium Term					
5	Energy saving by replacing the existing 20HP standard efficiency motors with energy efficient IE3 (or higher rated) motor in Minirator	59.51	Medium Term					
6	Energy Efficiency in Existing Pumping system by replacing inefficient motor(RW1-HT1)	21	Short Term					
7	Energy Efficiency in Existing Pumping system by replacing inefficient motor(RW1-HT3)	13	Short Term					
8	Energy Efficiency in Existing Pumping system by replacing inefficient motor (RW2-LT1)	32	Short Term					
9	Energy Efficiency in Existing Pumping system by replacing inefficient motor (RW2-LT2)	20	Short Term					
10	Energy Efficiency in Existing Pumping system by replacing inefficient motor (RW2-LT4)	11	Short Term					
11	Energy Efficiency in Existing Pumping system by replacing inefficient motor(RW3-HT1)	13	Short Term					
12	Energy Efficiency in Existing Pumping system by replacing inefficient motor (RW3-HT2)	16	Long Term					

13	Energy Efficiency in Existing Pumping system by replacing inefficient motor(RW3-HT3)	11	Short Term
14	Energy Efficiency in Existing Pumping system by replacing inefficient motor(PW1-HT1)	11	Short Term
15	Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW1-HT2)	11	Short Term
16)Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW1-HT6)	6	Short Term
17	Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW2-HT1)	20	Short Term
18	Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW2-HT3)	14	Short Term
19	Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW3-HT3)	14	Short Term
20	Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW3-HT4)	49	Short Term
21	Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW3-HT4)	34	Short Term
22	Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW3-HT5)	34	Short Term
23	Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW3-LT1)	5	Short Term
24	Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW3-LT5)	37	Short Term

	Implementation Schedule Short Te KWA PUMPING STATION, ALUV		
Sl No	Projects	SPB	Implementation Schedule
1	Energy Saving in Lighting by replacing existing 173 No's T12 Lamps to 18W LED Tube	4.40	Short Term
2	Energy Efficiency in Existing Pumping system by replacing inefficient motor(RW1-HT1)	21	Short Term
3	Energy Efficiency in Existing Pumping system by replacing inefficient motor(RW1-HT3)	13	Short Term
4	Energy Efficiency in Existing Pumping system by replacing inefficient motor (RW2-LT1)	32	Short Term
5	Energy Efficiency in Existing Pumping system by replacing inefficient motor (RW2-LT2)	20	Short Term
6	Energy Efficiency in Existing Pumping system by replacing inefficient motor (RW2-LT4)	11	Short Term
7	Energy Efficiency in Existing Pumping system by replacing inefficient motor(RW3-HT1)	13	Short Term
8	Energy Efficiency in Existing Pumping system by replacing inefficient motor(RW3-HT3)	11	Short Term
9	Energy Efficiency in Existing Pumping system by replacing inefficient motor(PW1-HT1)	11	Short Term
10	Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW1-HT2)	11	Short Term
11)Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW1-HT6)	6	Short Term
12	Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW2-HT1)	20	Short Term
13	Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW2-HT3)	14	Short Term
14	Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW3-HT3)	14	Short Term
15	Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW3-HT4)	49	Short Term
16	Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW3-HT4)	34	Short Term
17	Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW3-HT5)	34	Short Term
18	Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW3-LT1)	5	Short Term
19	Energy Efficiency in Existing Pumping system by replacing inefficient motor (PW3-LT5)	37	Short Term

	Implementation Schedule Medium Term							
	KWA PUMPING STATION, ALUVA							
Sl No	Projects	SPB	Implementation Schedule					
1	Energy saving by replacing the existing 50HP standard efficiency motors with energy efficient IE3 (or higher rated) motor in Minirator	59.51	Medium Term					
2	Energy saving by replacing the existing 50HP standard efficiency motors with energy efficient IE3 (or higher rated) motor in Minirator	59.51	Medium Term					
3	Energy saving by replacing the existing 20HP standard efficiency motors with energy efficient IE3 (or higher rated) motor in Minirator	59.51	Medium Term					
4	Energy saving by replacing the existing 20HP standard efficiency motors with energy efficient IE3 (or higher rated) motor in Minirator	59.51	Medium Term					

9 Technical Supplement

				Elect	ricity Bill De	etails (2018	-2019)				
	Name of the	Consumer			KWA PH S	ubdivision,	, Aluva				
	Contract dem	nnad (kVA)	3418 kVA			www.wash.e.v. 0	Castion		13556700	000844	
Month	Tariff		HT I (A) IN	DUSTRIAL	Consumer	numper &	Section		Aluva t	own	
		k	Wh			kVA		PF	PF Penalty /	Bc/Total)	Rs/kwh
	Z1	Z2	Z3	Total	Z1	Z 2	Z3	FF	Incentive	Rs(Total)	K2/KW11
Apr	809080	267280	542720	1619080	2445	2448	2438	0.96	-267148	9609377	5.94
May	842880	277240	559580	1679700	2660	2664	2671	0.96	-277134	9971916	5.94
Jun				1772760				0.96		10478469	5.91
Jul	862640	288960	575600	1727200	2667	2654	2658	0.96	-284988	10280612	5.95
Aug	835720	279000	570280	1685000	2697	2699	2750	0.94	-155350	10117775	6.00
Sep	721640	241680	477840	1441160	2914	2787	2794	0.93	-118896	8861829	6.15
Oct	863560	290480	583600	1737640	2825	2848	2867	0.94	-191140	10698130	6.16
Nov	914120	306080	615360	1835560	2824	2827	2845	0.95	-252389	11201470	6.10
Dec	825840	280560	557280	1663680	2816	2689	2828	0.96	-274507	10181645	6.12
Jan				1808640				0.96		10675874	5.90
Feb	889360	301200	599400	1789960	2630	2642	2656	0.96	-295343	10569982	5.91
Mar	800720	272120	542360	1615200	2646	2657	2663	0.96	-266508	9617892	5.95
				20375580	2638	26915	27170	0.95		122264971	6.00

				Elect	ricity Bill De	etails (2018	-2019)				
	Name of the	Consumer			KWA PH S	ubdivision,	Aluva				
	Contract dem	nnad (kVA)	1800 kVA		Constructor	www.wash.o.v. 0	Castion		13556700	001036	
Month	Tariff	· · ·	HT I (A) IN	DUSTRIAL	Consumer	A reamun	Section		Kalo	or	
		k	Wh			kVA		PF	PF Penalty /	Bc/Total)	Rs/kwh
	Z1	Z2	Z3	Total	Z1	Z2	Z3	FF	Incentive	Rs(Total)	K 5/KW 11
Apr	562240	188320	376480	1127040	1682	1667	1649	0.97	-216955	6627245	5.88
May	566480	188360	371160	1126000	1717	1691	1677	0.97	-216755	6632095	5.89
Jun	590160	198440	394720	1183320	1887	1871	1853	0.97	-227789	7007536	5.92
Jul	572920	190120	379840	1142880	1678	1671	1645	0.97	-220004	6712096	5.87
Aug	542800	180920	358200	1081920	1635	1627	1594	0.98	-238022	6338277	5.86
Sep	462520	161600	314920	939040	1688	1801	1652	0.97	-180765	5641785	6.01
Oct	528040	179120	355240	1062400	1680	1662	1642	0.97	-204512	6434848	6.06
Nov	547080	179920	374400	1101400	1649	1642	1608	0.97	-212020	6643266	6.03
Dec	516120	173920	348520	1038560	1647	1637	1606	0.97	-199923	6291861	6.06
Jan				1134800						6656201	5.87
Feb	565520	186680	379600	1131800	1639	1630	1605	0.97	-217871	6640203	5.87
Mar	500240	167120	340200	1007560	1625	1619	1597	0.98	-221663	5933361	5.89
				13076720	1887	18518	18128	0.97			1

KWA Aluva

• HT Capacitor requirement is 3313kVAr

• LT Capacitor requirement is 103.8kVAr

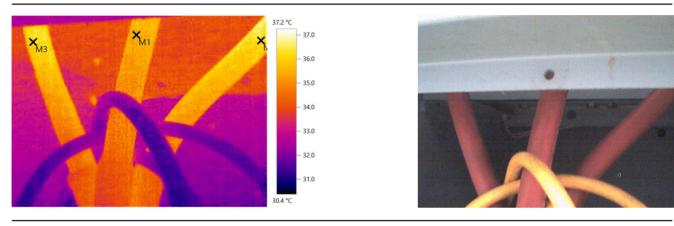
		Сар	acitor Rec	luirment	-			
Sl.No	Location	Motors	HP	Make	KW (Rated)	kW (Measured)	PF	Required kVAR
1	RWPH No.1	HT Motor No 1	282	KBL	210	163	0.99	15
2	KWFH NO.1	HT Motor No 3	215	KBL	160	171	0.99	14
3		Pump set No 1	175	KBL	131	106	0.88	56
4	RWPH No.2	Pump set No 2	200	Johnston oil lub	149	111	0.77	91
5		Pump set No 4	200	Johnston oil lub	149	102	0.59	137
6		HT Motor No 1	268	KBL	200	111	0.64	133
7	RWPH No.3	HT Motor No 2	268	KBL	200	125	0.63	149
8		HT Motor No 3	268	KBL	200	184	0.95	55
9		HT Motor No 1	503	KBL	375	378	0.95	110
10	PWPH No.1	HT Motor No 2	503	KBL	375	370	0.95	113
11		HT Motor No 6 M-2	215		160	142	0.98	22
12	PWPH No.2	HT Motor No 1	469	KBL	350	331	0.99	46
13		HT Motor No 3	469	KBL	350	310	0.8	230
14		HT Motor No 3	429	KBL	320	200	0.65	226
15		HT Motor No 4	469	KBL	350	200	0.65	225
16	PWPH No3	HT Motor No 5	469	KBL	350	202	0.65	231
17]	LT Motor 1 (to Kizhumad)	150	KBL	112	107	0.98	17
18]	LT Motor 5 (to aluva)	120		90	83	0.85	50

Sl.No			HP	MLD	Make	KW (Rated)	Line pressure (kg/cm2)	kW (Measured)	kVAR	kVA	Pf
1		HT Motor No 1	282		KBL	210	2.2	163	15	165	0.99
2	RWPH No.1	HT Motor No 2	215		KBL	160	2.3				
3		HT Motor No 3	215		KBL	160	2.2	171	14	173	0.99
4		HT Motor No 4	215		KBL	160	2.1				
5		Pump set No 1	175	38	KBL	131	2.2	106	56	120	0.88
6	RWPH No.2	Pump set No 2	200	40	Johnston oil lub	149	2.3	111	91	144	0.77
7	1.0.2	Pump set No 3	200	40	Johnston oil lub	149	2.2				
8		Pump set No 4	200	40	Johnston oil lub	149	2.1	102	137	171	0.59
9		HT Motor No 1	268	45	KBL	200	2.3	111	133	173	0.64
10	RWPH No.3	HT Motor No 2	268	45	KBL	200	2.2	125	149	198	0.63
11	1.0.5	HT Motor No 3	268	45	KBL	200	2.1	184	55	192	0.95
12		HT Motor No 4	268	45	KBL	200	2.2				
13		HT Motor No 1	503	35	KBL	375	6.3	378	110	393	0.95
14		HT Motor No 2	503	35	KBL	375	6.3	370	113	387	0.95
15	PWPH No.1	HT Motor No 3	503	35	KBL	375	6.3				
16		HT Motor No 4	503	35	KBL	375	6.3				
17		HT Motor No 5 M-1	215			160	6.3				
18]	HT Motor No 6 M-2	215			160	5.0	142	22	145	0.98
19		HT Motor No 1	469	35	KBL	350	4.4	331	46	334	0.99
20	PWPH No.2	HT Motor No 2	469	35	KBL	350	4.4				
21]	HT Motor No 3	469	35	KBL	350	4.4	310	230	385	0.8

22		HT Motor No 1	429		KBL	320	2.8				
23		HT Motor No 2	536		Marathon	400	2.8				
24		HT Motor No 3	429		KBL	320	2.8	200	226	308	0.65
25]	HT Motor No 4	469		KBL	350	2.8	200	225	308	0.65
26	PWPH No 3	HT Motor No 5	469		KBL	350	2.8	202	231	311	0.65
27		LT Motor 1 (to Kizhumad)	150	8.5	KBL	112	6.0	107	17	109	0.98
28		LT Motor 2 (to Kizhumad)	150	8.5	KBL	112	6.0				
29		LT Motor 3 (to Kizhumad)	120	8.5	KBL	90	6.0				
30		LT Motor 4 (to aluva)	120	8		90	5.4				
31		LT Motor 5 (to aluva)	120	8		90	5.4	83	50	97	0.85
32	Tanker pump set	Pump set No 1	50	9.5	KBL	37					
33	ranker pump set	Pump set No 2	50	9.5	Luby	37		20.8			
34	WW pump sets in	Pump set No 1	50	9.5	Luby	37					
35	plant No 3	Pump set No 2	50	9.5	Luby	37					
36	WW pump sets in	Pump set No 1	20	3.5	Remi	15					
37	plant No 4	Pump set No 2	20	3.5	Remi	15					

Sl.No			HP	MLD	M3/day	Hrs	M3/hr	Make
1		HT Motor No 1	282		0	24	0	KBL
2 RWPH	No 1	HT Motor No 2	215		0	24	0	KBL
3	NO.1	HT Motor No 3	215		0	24	0	KBL
4		HT Motor No 4	215		0	24	0	KBL
5		Pump set No 1	175	38	38000	24	1583	KBL
6	No 2	Pump set No 2	200	40	40000	24	1667	Johnston oil lub
7 RWPH	NO.2	Pump set No 3	200	40	40000	24	1667	Johnston oil lub
8		Pump set No 4	200	40	40000	24	1667	Johnston oil lub
9		HT Motor No 1	268	45	45000	24	1875	KBL
10 DWDU	Na 2	HT Motor No 2	268	45	45000	24	1875	KBL
10 11 RWPH	2.0/1	HT Motor No 3	268	45	45000	24	1875	KBL
12		HT Motor No 4	268	45	45000	24	1875	KBL
13		HT Motor No 1	0	35	35000	24	1458	KBL
14		HT Motor No 2	0	35	35000	24	1458	KBL
15 PWPH	No 1	HT Motor No 3	0	35	35000	24	1458	KBL
16 PWPH	NO.1	HT Motor No 4	0	35	35000	24	1458	KBL
17		HT Motor No 5 M-1	215		0	24	0	
18		HT Motor No 6 M-2	215		0	24	0	
19		HT Motor No 1	469	35	35000	24	1458	KBL
20 PWPH	No.2	HT Motor No 2	469	35	35000	24	1458	KBL
21		HT Motor No 3	469	35	35000	24	1458	KBL
22		HT Motor No 1	429		0	24	0	KBL
23		HT Motor No 2	536		0	24	0	Marathon
24		HT Motor No 3	429		0	24	0	KBL
25		HT Motor No 4	469		0	24	0	KBL
26 PWPH	No 3	HT Motor No 5	469		0	24	0	KBL
27 PWPH	C UN	LT Motor 1 (to Kizhumad)	150	8.5	8500	24	354	KBL
28		LT Motor 2 (to Kizhumad)	150	8.5	8500	24	354	KBL
29		LT Motor 3 (to Kizhumad)	120	8.5	8500	24	354	KBL
30		LT Motor 4 (to aluva)	120	8	8000	24	333	
31		LT Motor 5 (to aluva)	120	8	8000	24	333	
32 Tanka		Pump set No 1	50	9.5	9500	24	396	KBL
33 Tankei	r pump set	Pump set No 2	50	9.5	9500	24	396	Luby
34 WW pi	ump sets in	Pump set No 1	50	9.5	9500	24	396	Luby
35 plant I	No 3	Pump set No 2	50	9.5	9500	24	396	Luby
36 WW pt	ump sets in	Pump set No 1	20	3.5	3500	24	146	Remi
37 plant I	No 4	Pump set No 2	20	3.5	3500	24	146	Remi

Energy Audit Report: 2019

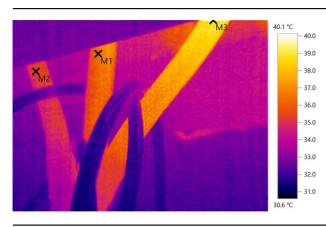


M	ONTHLY P	RODUCTIC	KERALA W	IATER OF	AUTHORITY P.H.HEAD WORKS	RKS SECTION,	ION, ALUVA.	
			MONTH	NON	ER 2019			
Date	36"	42"	48"	Aluva/P	Choornik	Aluva	Keezhmad	T ₂ t ₂
Date	PWPH 1	PWPH 2	PWPH 3	WPH 1	kara	PWPH 3	PWPH 3	I OTAL
11-01-2019	53.86	81.89	125.12	6.72	3.75	8.08	6.72	286.14
11-02-2019	53.120	82.100	125.100	6.040	3.700	8.120	4.810	282.99
11-03-2019	53.210	82.130	125.010	6.490	3.720	8.010	5.120	283.69
11-04-2019	53.810	82.050	125.100	6.500	3.700	8.700	5.140	285
11-05-2019	54.400	82.120	125.180	6.560	3.750	8.540	5.270	285.82
11-06-2019	54.510	82.100	125.700	6.580	3.700	8.100	4.910	285.6
11-07-2019	54.460	82.14	125.010	6.770	3.730	7.760	5.440	285.31
11-08-2019	54.210	82.100	125.120	6.610	3.810	7.610	5.410	284.87
11-09-2019	54.010	82.120	125.160	6.390	3.680	7.810	4.820	283.99
11-10-2019	54.120	82.160	125.190	6.540	3.750	7.500	5.100	284.36
11-11-2019	54.250	82.580	125.010	6.440	3.740	7.610	5.600	285.23
11-12-2019	54.690	82.730	125.100	6.090	3.470	7.010	5.670	284.76
13/11/2019	53.810	81.350	125.180	6.990	3.840	8.120	4.850	284.14
14/11/2019	52.100	81.330	124.010	7.090	3.860	7.100	4.810	280.3
15/11/2019	54.070	82.950	122.100	7.080	3.810	7.810	5.790	283.61
16/11/2019	54.190	82.210	113.310	7.200	3.880	7.860	5.990	274.64
17/11/2019	53.360	80.120	120.120	7.150	3.780	7.600	5.990	278.12
18/11/2019	53.520	82.540	122.100	7.210	3.950	7.800	5.850	282.97
19/11/2019	53.210	82.280	125.120	7.100	3.870	7.860	4.860	284.3
20/11/2019	53.860	82.310	125.160	7.230	3.940	7.810	4.860	285.17
21/11/2019	54.260	78.190	124.100	6.020	3.450	7.860	5.100	278.98
22/11/2019	54.100	82.100	125.160	7.080	3.780	7.880	5.060	285.16
23/11/2019	53.120	82.100	125.080	7.100	3.910	7.710	4.000	283.02
24/11/2019	53.210	82.280	125.100	7.140	3.960	7.800	4.860	284.35
25/11/2019	52.530	82.100	125.160	7.100	3.900	6.570	3.980	281.34
26/11/2019	54.440	81.660	118.100	7.030	3.890	7.100	4.160	276.38
27/11/2019	54.260	81.430	117.540	7.090	3.970	7.180	5.120	276.59
28/11/2019	53.810	82.430	121.070	7.110	3.870	7.580	4.760	280.63
29/11/2019	52.360	79.450	112.440	5.880	3.460	6.170	3.840	263.6
		000000	174 440	6.360	3.540	7.810	5.990	284.56

Thermography report

Company Tester	OTTOTRACTIONS ACCREDITED ENERG BUREAU OF ENERG Abin baby		Customer		LA WATER AUTHORITY JVANANTHAPURAM
Device	testo 875-1i	Serial No.: 26	621731	Lens:	Standard 32°
Task	Energy Audit				

Picture data:	Date:	11-03-2020	Emissivity:	0.95
	Measuring Time: File:	11:46:28 PWPH-1 (Pump-1).BMT	Refl. temp. [°C]:	20.0

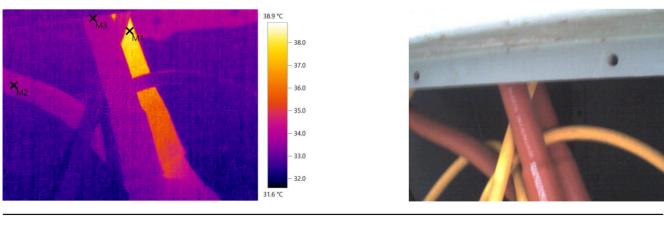

Picture markings:

Measurement Objects	Temp. [°C]	Emiss.	Refl. temp. [°C]	Remarks
Measure point 1	35.5	0.95	20.0	69A
Measure point 2	36.1	0.95	20.0	70A
Measure point 3	36.0	0.95	20.0	69A

Remarks:

Bench mark

Thermography report



Picture data:	Measuring Time:		Emissivity: Refl. temp. [°C]:	0.95 20.0
	File:	PWPH-1 (Pump-2).BMT		

Picture markings:

Measurement Objects	Temp. [°C]	Emiss.	Refl. temp. [°C]	Remarks
Measure point 1	36.4	0.95	20.0	68A
Measure point 2	35.4	0.95	20.0	70A
Measure point 3	39.4	0.95	20.0	68A

Remarks: Terminal loose at R-Phase

Picture data:	Date:	11-03-2020	Emissivity:	0.95
	Measuring Time: File:	11:25:04 RWPH 3 (Pump-1).BMT	Refl. temp. [°C]:	20.0
	File:	RWPH 3 (Pump-T).BMT		

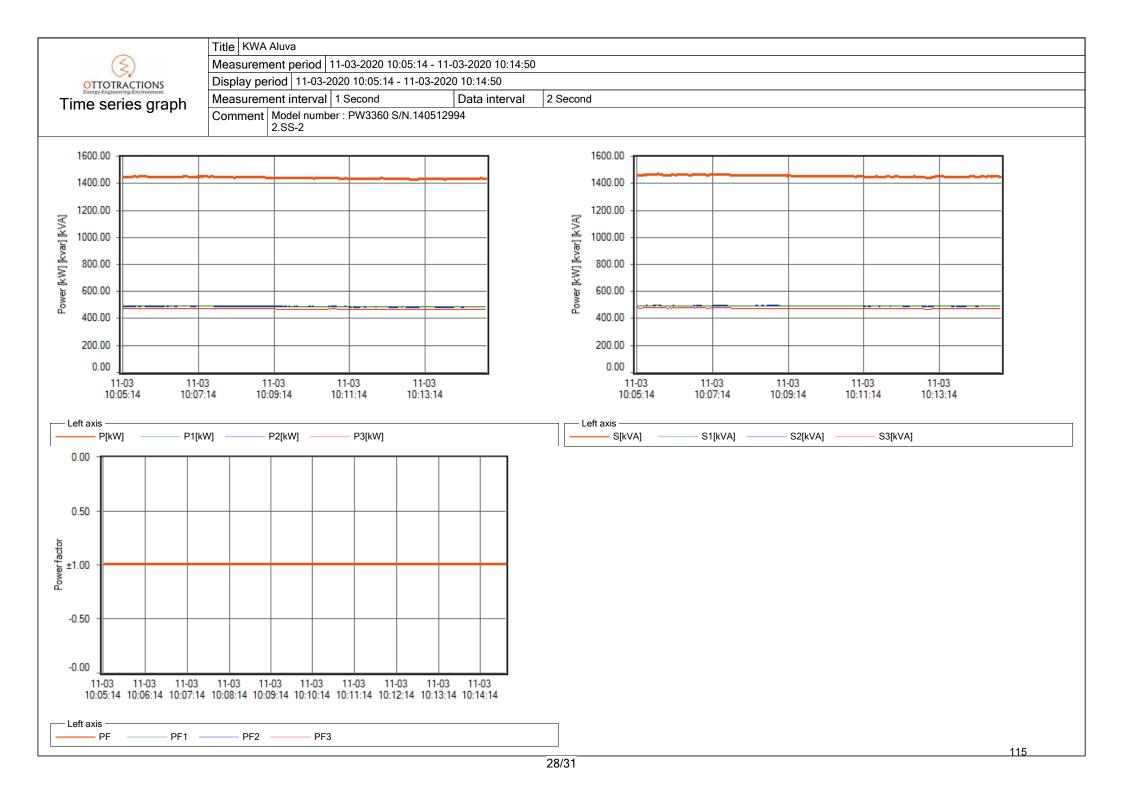
Picture markings:

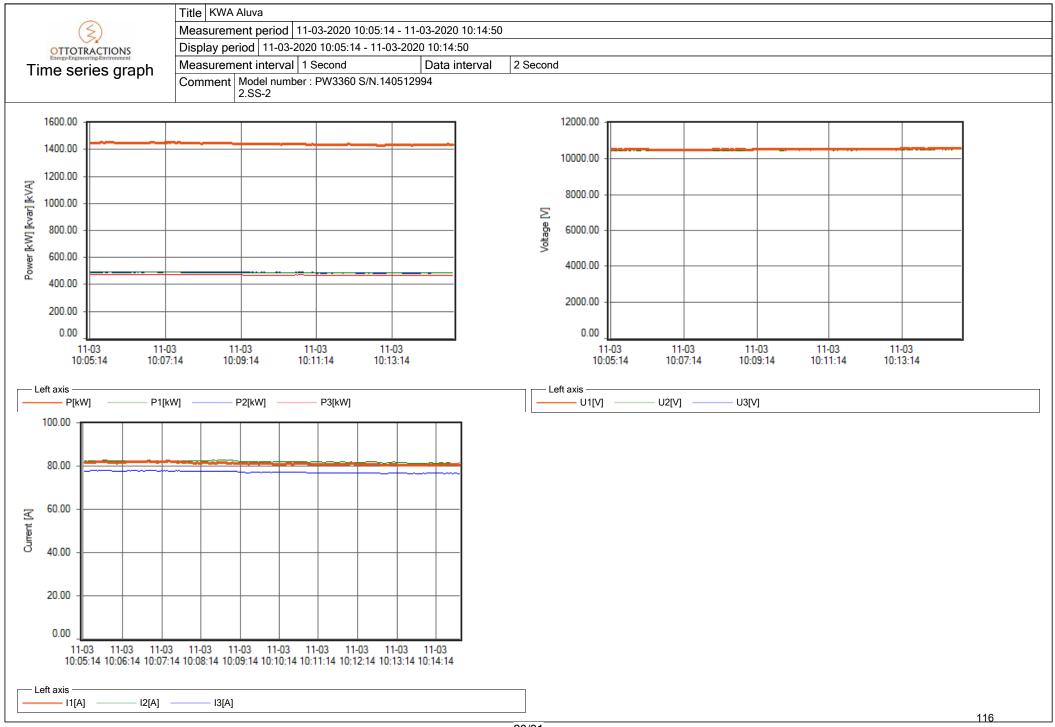
Thermography report

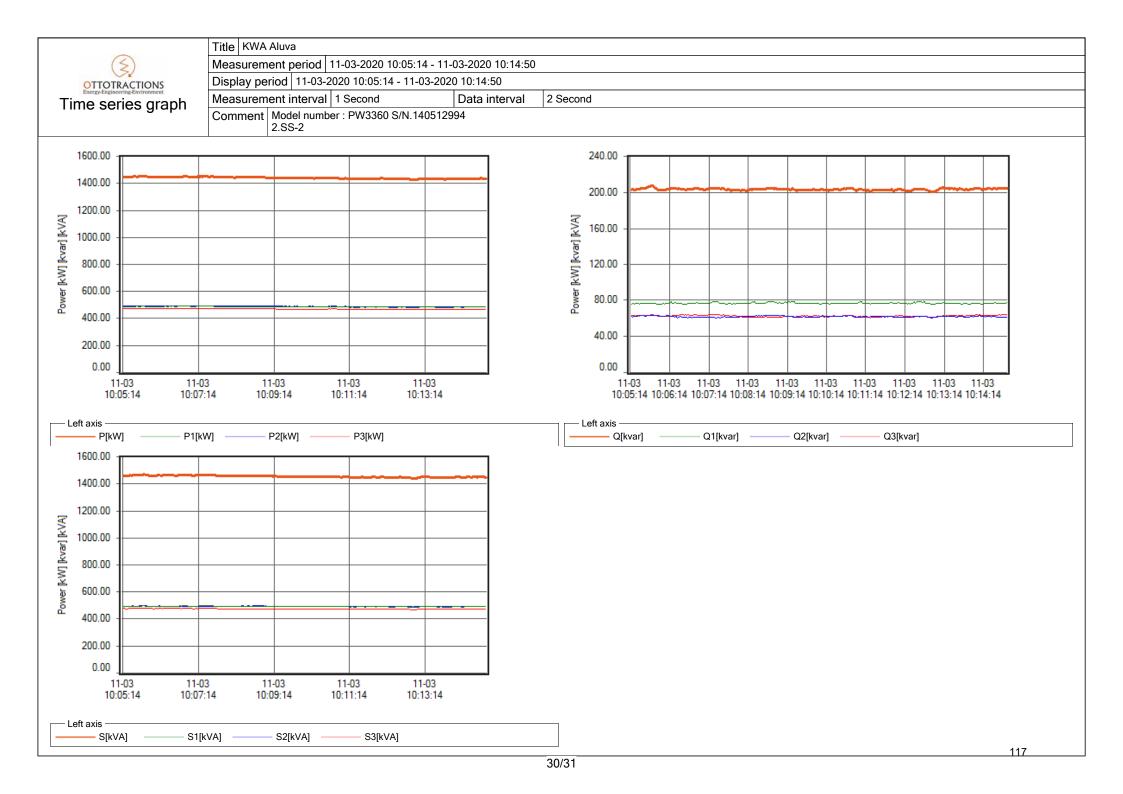
Measurement Objects	Temp. [°C]	Emiss.	Refl. temp. [°C]	Remarks
Measure point 1	38.4	0.95	20.0	33A
Measure point 2	33.6	0.95	20.0	30A
Measure point 3	33.7	0.95	20.0	30A

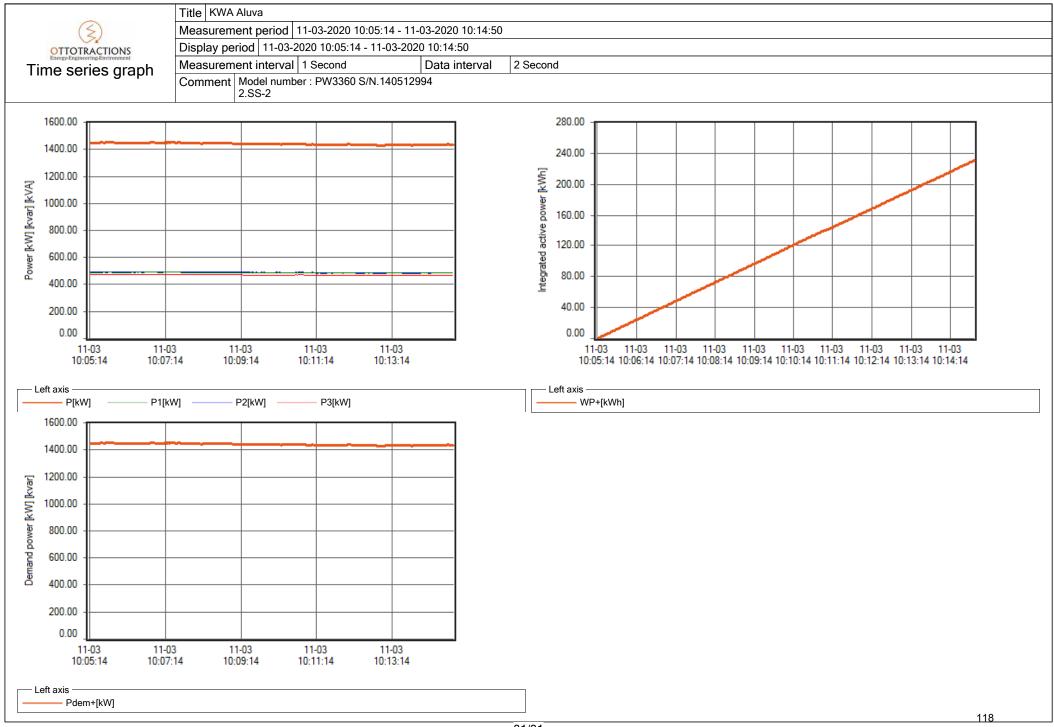
Remarks:

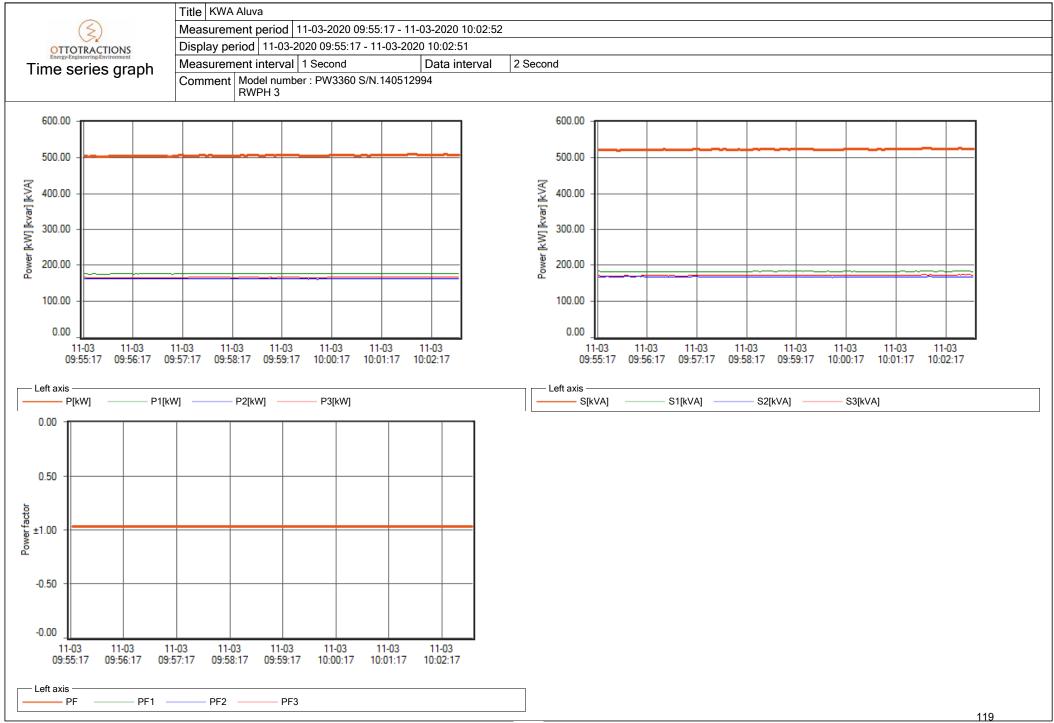
Terminal loose at R-Phase

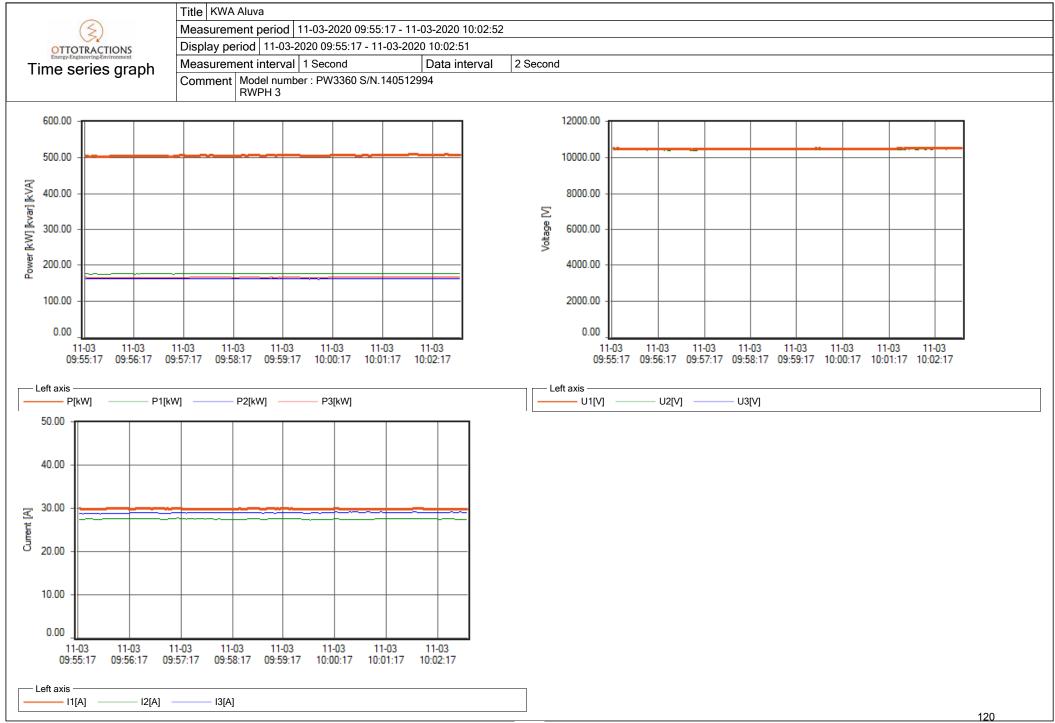

28-10-2020 ,

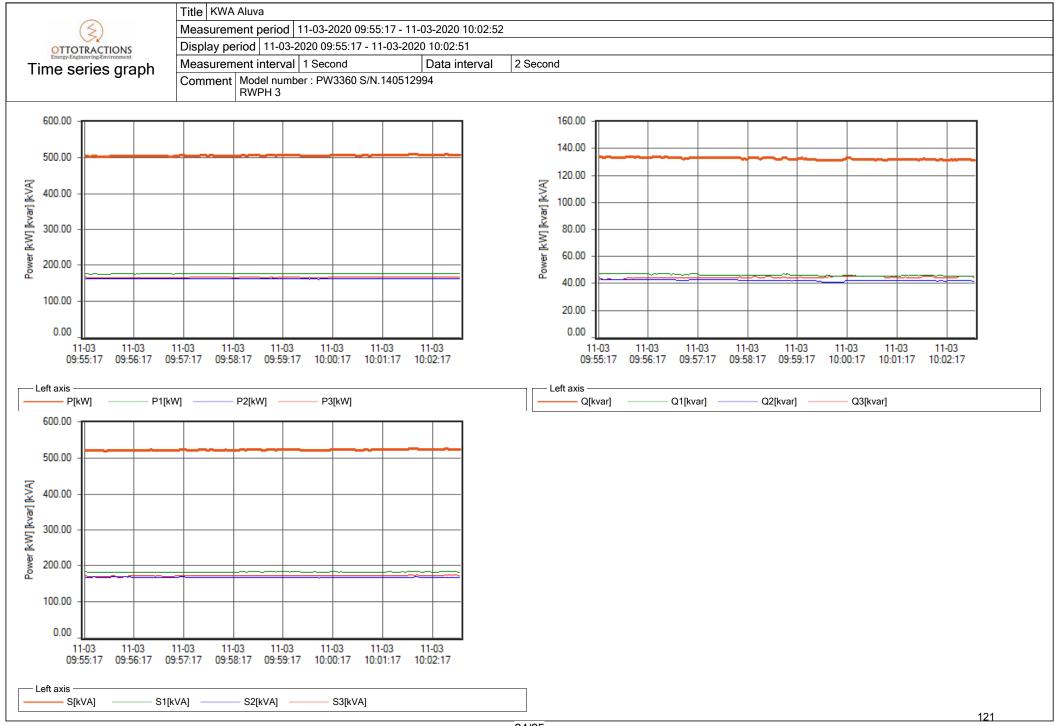

Abin baby

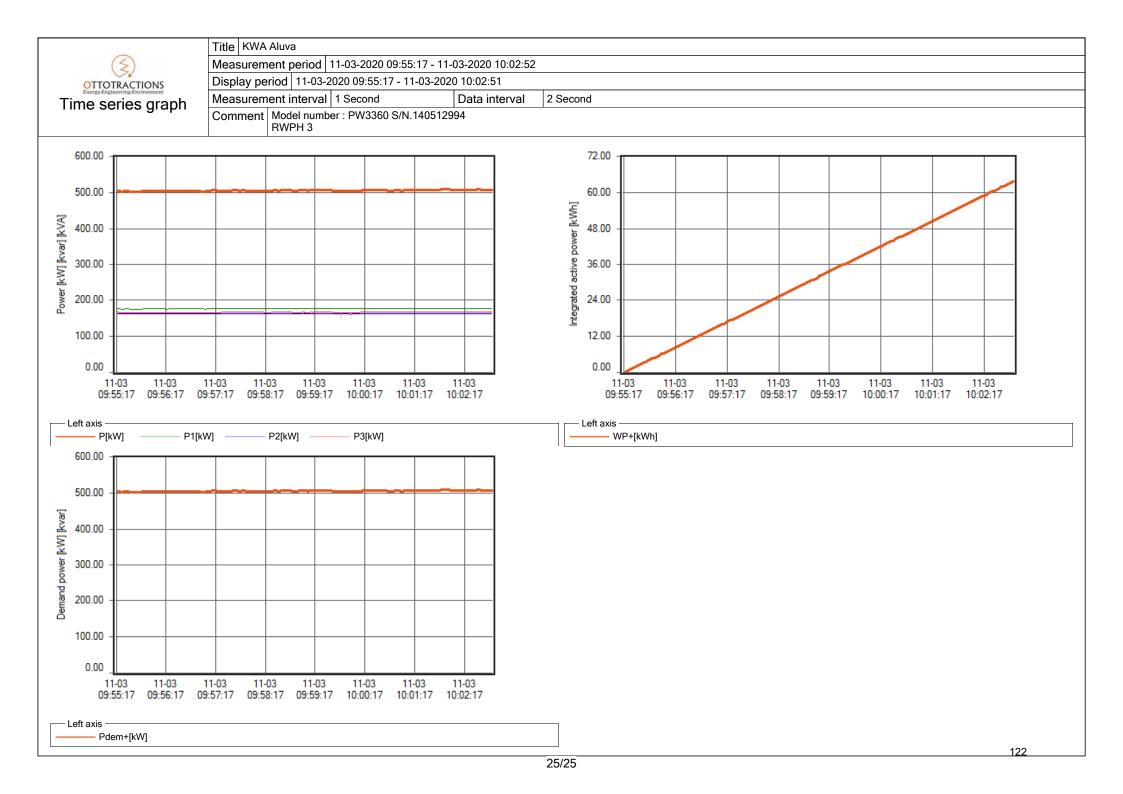

	Title KV	VA Aluva												
C		Measurement period 11-03-2020 10:05:14 - 11-03-2020 10:14:50												
(3)														
OTTOTRACTIONS Energy-Engineering-Environment	. ,	Display period 11-03-2020 10:05:14 - 11-03-2020 10:14:50 Measurement interval 1 Second Data interval 2 Second												
Time series data	Measure													
	Comme		ber : PW3360 \$	S/N.140512994										
		2.SS-2												
Date Time	U1[V]	U2[V]	U3[V]	I1[A]	12[A]	13[A]	P[kW]	P1[kW]	P2[kW]	P3[kW]	Q[kvar]	Q1[kvar]		
Average value in the period	10504	10448	10473	81.22	82.06	77.26	1440	484	488	469	204	77		
Maximum value in the period	10551	10498	10522	82.29	82.77	78.22	1455	490	492	474	207	78		
Time of maximum value	11-03-2020	11-03-2020	11-03-2020	11-03-2020	11-03-2020	11-03-2020	11-03-2020	11-03-2020	11-03-2020	11-03-2020	11-03-2020	11-03-2020		
	10:14:40	10:14:42	10:14:40	10:07:26	10:08:56	10:05:48	10:05:48	10:07:26	10:05:48	10:05:44	10:05:46	10:06:16		
Minimum value in the period Time of minimum value	10470 11-03-2020	10408 11-03-2020	10433 11-03-2020	80.28	81.21 11-03-2020	76.41	1427 11-03-2020	479 11-03-2020	484 11-03-2020	464 11-03-2020	201 11-03-2020	76 11-03-2020		
Time of minimum value	10:06:54	10:09:02	10:09:02	10:13:44	10:13:32	10:13:46	10:12:54	10:12:54	10:12:54	10:12:54	10:12:54	10:05:16		
11-03-2020 10:05:14	10.00.04	10.03.02	10.03.02	10.10.77	10.10.02	10.10.40	10.12.04	10.12.04	10.12.04	10.12.04	10.12.04	10.00.10		
10:05:16	10493	10440	10469	81.72	82.30	77.76	1447	486	489	472	203	76		
10:05:18	10490	10437	10469	81.77	82.26	77.68	1446	486	489	471	204	77		
10:05:20	10492	10439	10470	81.69	82.23	77.65	1446	486	489	471	203	76		
10:05:22	10495	10440	10470	81.66	82.31	77.69	1446	486	489	471	203	77		
10:05:24	10491	10440	10468	81.80	82.38	77.85	1448	487	490	472	204	77		
10:05:26 10:05:28	10490 10493	10438 10441	10466 10466	81.82 81.66	82.37 82.40	77.88	1448 1448	487 486	489 490	472 473	204	77		
10:05:30	10493	10441	10466	81.71	82.40	77.90	1448	486	490	473	204	76 77		
10:05:32	10493	10442	10404	81.82	82.53	78.04	1443	487	490	473	205	77		
10:05:34	10489	10438	10463	81.89	82.52	78.06	1451	487	490	473	205	77		
10:05:36	10490	10436	10468	81.96	82.43	77.84	1449	488	490	472	205	77		
10:05:38	10493	10441	10469	81.87	82.44	77.91	1450	487	490	473	205	77		
10:05:40	10494	10442	10469	81.93	82.52	78.03	1451	488	491	473	206	77		
10:05:42	10499	10446	10472	81.90	82.58	78.03	1452	487	491	473	206	77		
10:05:44	10492	10439	10466	82.05	82.68	78.15	1453	488	491	474	206	77		
10:05:46 10:05:48	10494 10497	10443 10445	10470 10471	82.10 82.07	82.66 82.72	78.18 78.22	1454 1455	489 488	491 492	474 474	207 207	77 77		
10:05:50	10497	10445	10471	81.91	82.66	78.22	1455	488	492	474	207	77		
10:05:52	10495	10443	10465	81.78	82.54	78.05	1455	487	491	473	200	77		
10:05:54	10493	10444	10464	81.65	82.42	78.05	1449	486	490	473	205	76		
10:05:56	10492	10442	10462	81.57	82.36	77.96	1448	485	490	473	203	76		
10:05:58	10494	10442	10463	81.46	82.27	77.81	1445	485	489	472	203	76		
10:06:00	10494	10442	10464	81.46	82.25	77.73	1445	485	489	471	203	76		
10:06:02	10494	10439	10464	81.47	82.29	77.66	1445	485	489	471	203	76		
10:06:04	10498 10503	10441	10468	81.46	82.28	77.60	1445	485 485	489	471 471	203	77		
10:06:06 10:06:08	10503	10448 10445	10471 10469	<u>81.41</u> 81.47	82.27 82.35	77.68	1446 1446	485	489 490	471	203 203	76 77		
10:06:10	10501	10445	10409	81.59	82.44	77.82	1440	485	490	471	203	77		
10:06:12	10496	10439	10465	81.69	82.52	77.85	1449	486	491	472	204	77		
10:06:14	10492	10434	10462	81.71	82.51	77.77	1448	486	490	471	204	77		
10:06:16	10494	10436	10466	81.75	82.53	77.72	1448	487	490	471	205	78		
10:06:18	10490	10434	10463	81.84	82.51	77.84	1449	487	490	472	205	77		
10:06:20	10483	10429	10459	81.94	82.48	77.87	1448	487	490	472	205	77		
10:06:22	10478	10424	10457	82.11	82.51	77.93	1449	488	490	472	205	78		
10:06:24 10:06:26	10479 10476	10426 10422	10455 10455	81.97 82.06	82.52 82.51	77.93 77.81	1449 1448	487 488	490 490	472 471	205 204	77 77		
10:06:28	10475	10422	10455	82.08	82.51	77.89	1448	488	490	471	204	77		
10:06:30	10474	10423	10452	82.04	82.51	78.02	1445	488	489	472	203	77		
10:06:32	10477	10428	10456	82.04	82.42	77.97	1449	488	489	472	204	77		
10:06:34	10475	10426	10453	82.08	82.49	78.04	1450	488	489	472	204	76		
10:06:36	10481	10432	10460	81.94	82.35	77.88	1448	488	489	472	204	76		

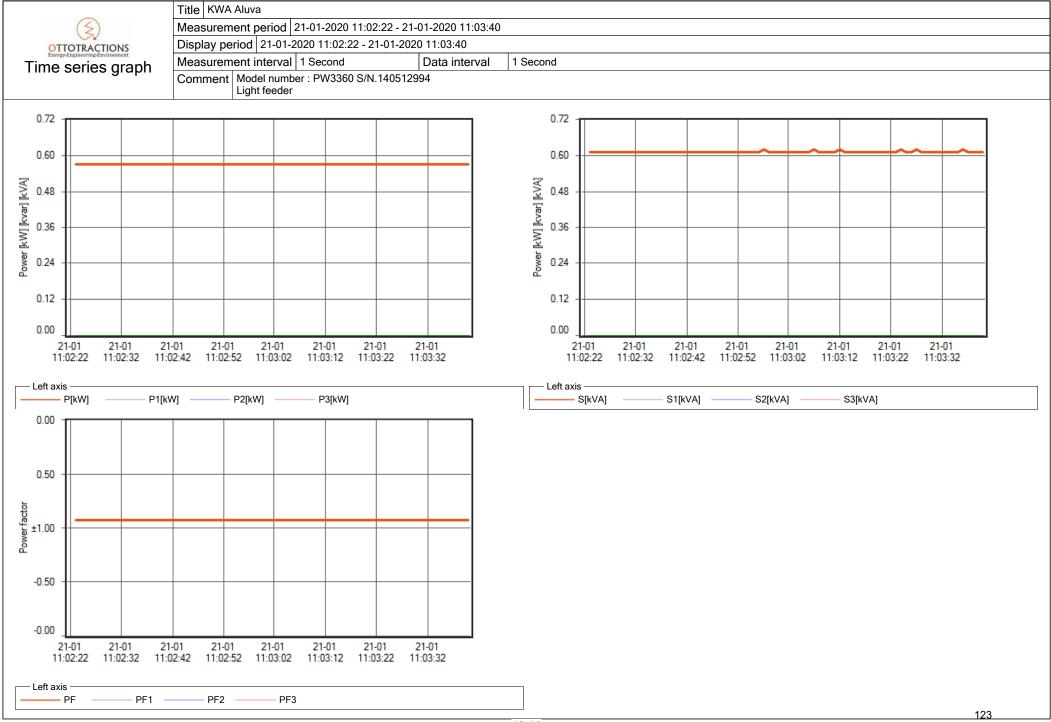

Title K	tle KWA Aluva											
Measurement period 11-03-2020 10:05:14 - 11-03-2020 10:14:50												
Display period 11-03-2020 10:05:14 - 11-03-2020 10:14:50												
Measurement interval 1 Second Data interval 2 Second												
U1[V]	U2[V]	U3[V]	I1[A]	12[A]	13[A]	P[kW]	P1[kW]	P2[kW]	P3[kW]	Q[kvar]	Q1[kvar]	
10478		10457	81.98	82.36	77.87	1448	488	489	472	203	76	
10473	0473 10423	10453	82.00	82.35	77.85	1447	488	488	471	203	76	
10473		10454	82.14	82.44	77.88	1449	488	489	472	204	77	
10477		10457	82.15	82.50	77.88	1449	489	489	472	204	77	
10481		10460	82.07	82.46	77.80	1449	488	489	471	204	77	
10481		10462	82.11	82.49	77.84	1450	489	490	472	204	77	
10479		10457	82.12	82.58	77.93	1450	488	490	472	204	77	
10480		10460	82.19	82.64	77.97	1452	489	490	472	205	77	
10470 10471		10449 10449	82.25 82.23	82.68 82.70	78.05 78.00	1451 1451	489 489	490 490	472 472	205 205	77 78	
10471		10449	82.23	82.70	78.00	1451	489	490	472	205	78 77	
10472		10449	82.05	82.58	77.97	1450	400	490	472	205	77	
10472		10449	82.05	82.58	77.92	1449	400	490	472	204	77	
10474		10445	81.95	82.48	77.87	1447	487	489	471	204	77	
10474		10458	81.84	82.41	77.78	1447	487	489	471	204	77	
10483		10459	81.80	82.33	77.75	1446	487	489	471	203	77	
10480		10457	81.98	82.45	77.86	1448	488	489	471	204	77	
10483		10460	81.99	82.50	77.77	1449	488	490	471	204	77	
10479	0479 10425	10458	82.13	82.57	77.93	1450	488	490	472	205	77	
10478		10458	82.13	82.51	77.87	1450	489	489	472	205	77	
10477		10456	82.19	82.59	77.91	1450	489	490	472	205	78	
10480		10459	82.14	82.56	77.84	1450	489	490	471	205	78	
10483		10461	82.21	82.67	77.89	1451	489	491	472	205	78	
10481		10462	82.26	82.64	77.85	1451	489	490	472	205	78	
10482		10465	82.29	82.57	77.84	1451	490	490	472	205	78	
10485		10465	82.21	82.58	77.83	1451	489	490	471	205	78	
10481		10465	82.24	82.43	77.79	1450	489	489	471	205	77	
10483		10463	82.10	82.49	77.82	1450	489	490	471 472	204 205	77	
10485		10462	82.09	82.62		1450	489	490	472	205	77	
10485 10487		10463 10460	82.10 81.84	82.56 82.50	77.88	1451 1448	489 487	490 490	472	205	77 77	
10487		10460	81.85	82.50	77.91	1448	487	490	472	204	77	
10484		10454	81.92	82.30	77.86	1448	487	490	472	203	76	
10477		10451	81.91	82.54	77.84	1448	487	403	472	203	70	
10477		10453	81.77	82.52	77.77	1447	486	490	471	204	77	
10482		10454	81.73	82.42	77.79	1446	486	489	471	202	76	
10484		10458	81.79	82.41	77.71	1446	487	489	471	203	76	
10477	0477 10422	10451	81.86	82.47	77.72	1446	487	489	471	203	77	
10482	0482 10429	10455	81.69	82.37	77.70	1446	486	489	471	203	76	
10483	0483 10428	10456	81.75	82.42	77.63	1445	486	489	470	203	77	
10489		10461	81.67	82.40	77.55	1445	486	489	470	203	77	
10487		10458	81.65	82.40	77.57	1445	486	489	470	203	77	
10493		10459	81.44	82.38	77.51	1444	485	489	470	202	77	
10494		10461	81.43	82.41	77.48	1444	485	489	470	203	77	
10492		10457	81.44	82.45	77.56	1444	485	490	470	203	77	
											77	
											77	
											77 77	
	1 1 1	10432 10433 10492 10432 10493 10431 10491 10429 10488 10427	10492 10432 10457 10493 10431 10456 10491 10429 10454	10492 10432 10457 81.48 10493 10431 10456 81.37 10491 10429 10454 81.33	10492 10432 10457 81.48 82.50 10493 10431 10456 81.37 82.48 10491 10429 10454 81.33 82.47	10492 10432 10457 81.48 82.50 77.56 10493 10431 10456 81.37 82.48 77.49 10491 10429 10454 81.33 82.47 77.50	10492104321045781.4882.5077.56144510493104311045681.3782.4877.49144310491104291045481.3382.4777.501443	10492104321045781.4882.5077.56144548510493104311045681.3782.4877.49144348410491104291045481.3382.4777.501443484	10492104321045781.4882.5077.56144548549010493104311045681.3782.4877.49144348449010491104291045481.3382.4777.501443484490	10492104321045781.4882.5077.56144548549047010493104311045681.3782.4877.49144348449047010491104291045481.3382.4777.501443484490470	10492104321045781.4882.5077.56144548549047020310493104311045681.3782.4877.49144348449047020210491104291045481.3382.4777.501443484490470202	

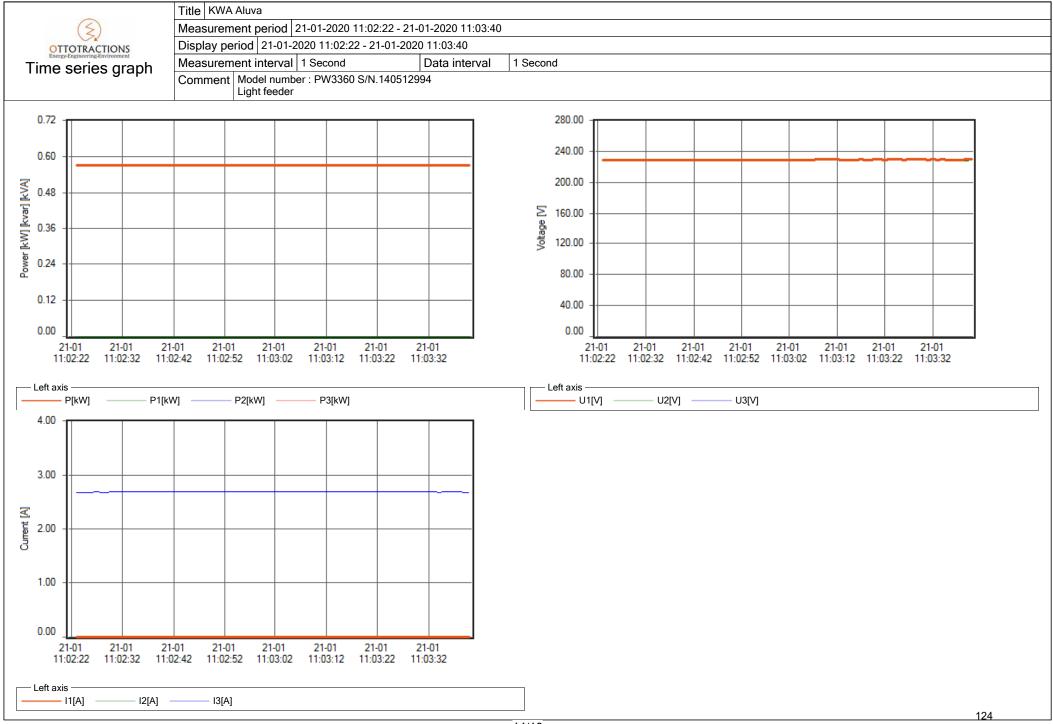

		Title K\	WA Aluva											
			Measurement period 11-03-2020 10:05:14 - 11-03-2020 10:14:50											
		Display	Display period 11-03-2020 10:05:14 - 11-03-2020 10:14:50											
	series data	Measur	Measurement interval 1 Second Data interval 2 Second											
		Comme	ent Model numb	er : PW3360 S	S/N.140512994		•							
			2.SS-2											
Date	Time	U1[V]	U2[V]	U3[V]	I1[A]	12[A]	13[A]	P[kW]	P1[kW]	P2[kW]	P3[kW]	Q[kvar]	Q1[kvar]	
11-03-2020	10:08:16	10487	10425	10449	81.46	82.62	77.62	1445	485	490	470	203	77	
	10:08:18	10491	10429	10454	81.50	82.61	77.61	1445	485	490	470	204	77	
	10:08:20	10497	10434	10460	81.46	82.55	77.47	1445	485	490	470	203	78	
	10:08:22	10498	10435	10460	81.46	82.61	77.57	1446	485	491	470	204	78	
	10:08:24	10496	10433	10458	81.47	82.63	77.58	1446	485	491	470	204	78	
	10:08:26	10497	10436	10459	81.38	82.53	77.57	1445	485	490	470	204	77	
	10:08:28	10495	10433	10457	81.39	82.53	77.56	1445	485	490	470	204	77	
	10:08:30 10:08:32	10490 10492	10427 10430	10451 10454	81.42 81.49	82.63 82.65	77.58 77.65	1444 1446	484 485	490 491	470 471	204 204	77 77	
	10:08:32	10492	10430	10454	81.49	82.65	77.62	1446	485	491	471	204	77	
	10:08:34	10432	10429	10451	81.43	82.05	77.59	1445	483	491	470	204	77	
	10:08:38	10488	10430	10452	81.45	82.57	77.67	1445	485	490	470	204	77	
	10:08:40	10492	10431	10454	81.50	82.65	77.70	1446	485	491	471	204	77	
	10:08:42	10493	10431	10454	81.48	82.69	77.69	1446	485	491	470	205	78	
	10:08:44	10491	10429	10451	81.48	82.70	77.70	1446	485	491	470	205	78	
	10:08:46	10491	10426	10452	81.53	82.71	77.64	1446	485	491	470	205	78	
	10:08:48	10491	10427	10452	81.54	82.72	77.63	1446	485	491	470	205	78	
	10:08:50	10491	10427	10452	81.51	82.74	77.66	1446	485	491	470	205	78	
	10:08:52	10490	10427	10453	81.52	82.66	77.61	1445	485	491	470 470	205	78	
	10:08:54 10:08:56	10492 10484	10430 10422	10452 10443	81.43 81.42	82.64 82.77	77.63	1445 1445	484 484	491 491	470	204 205	78 78	
	10:08:58	10485	10422	10443	81.32	82.66	77.64	1445	484	491	471	205	78	
	10:09:00	10483	10415	10442	81.36	82.00	77.69	1444	484	490	470	204	77	
	10:09:02	10472	10408	10433	81.48	82.67	77.62	1443	484	490	469	201	78	
	10:09:04	10481	10419	10440	81.32	82.62	77.62	1443	483	490	470	204	77	
	10:09:06	10481	10419	10440	81.31	82.62	77.63	1443	483	490	470	204	77	
	10:09:08	10493	10434	10455	81.29	82.47	77.54	1443	484	490	470	204	77	
	10:09:10	10506	10444	10470	81.30	82.38	77.36	1443	484	490	469	204	78	
	10:09:12	10511	10450	10476	81.23	82.22	77.24	1442	484	489	469	204	78	
	10:09:14	10514	10454	10480	81.22	82.19	77.22	1442	484	489	469	204	77	
	10:09:16	10517	10456	10483	81.21	82.21	77.13	1442	485	489	468	204	78	
	10:09:18 10:09:20	10518 10521	10456 10459	10483 10486	81.14 81.16	82.15 82.16	77.12	1441 1442	484 484	489 489	468 468	203 204	78 78	
	10:09:20	10521	10459	10486	81.16	82.16	77.05	1442	484	489 490	468	204	78	
	10:09:22	10524	10457	10489	81.09	82.17	76.97	1442	483	490	408	203	78	
	10:09:26	10522	10457	10484	81.04	82.02	76.98	1439	484	488	467	203	70	
	10:09:28	10517	10457	10486	81.08	81.94	76.96	1439	484	488	467	202	77	
	10:09:30	10514	10457	10485	81.17	81.94	77.07	1440	484	488	468	203	77	
	10:09:32	10512	10454	10482	81.20	81.97	77.09	1440	484	488	468	203	77	
	10:09:34	10510	10452	10480	81.16	81.96	77.09	1439	484	488	468	203	77	
	10:09:36	10512	10456	10483	81.19	81.95	77.12	1440	484	488	468	203	77	
	10:09:38	10513	10458	10483	81.17	81.99	77.21	1441	484	488	469	203	77	
	10:09:40	10516	10461	10487	81.13	81.89	77.15	1440	484	487	468	203	77	
	10:09:42	10519	10465	10488	81.05	81.84	77.10	1440	484	487	469	203	77	
	10:09:44	10518	10462	10490	81.24	81.92	77.11	1441	485	488	468	203	77	
	10:09:46	10510	10452	10482	81.23	81.99	77.07	1440	484	488	468	203	77	
	10:09:48 10:09:50	10507 10502	10450 10445	10478 10472	81.17 81.25	81.97 82.04	77.10	1439 1440	484 484	488 488	468	203 203	77 77	
	10.03.30	10002	10445	10472	81.25	82.04	77.23	1440	484	488	468	203	77	

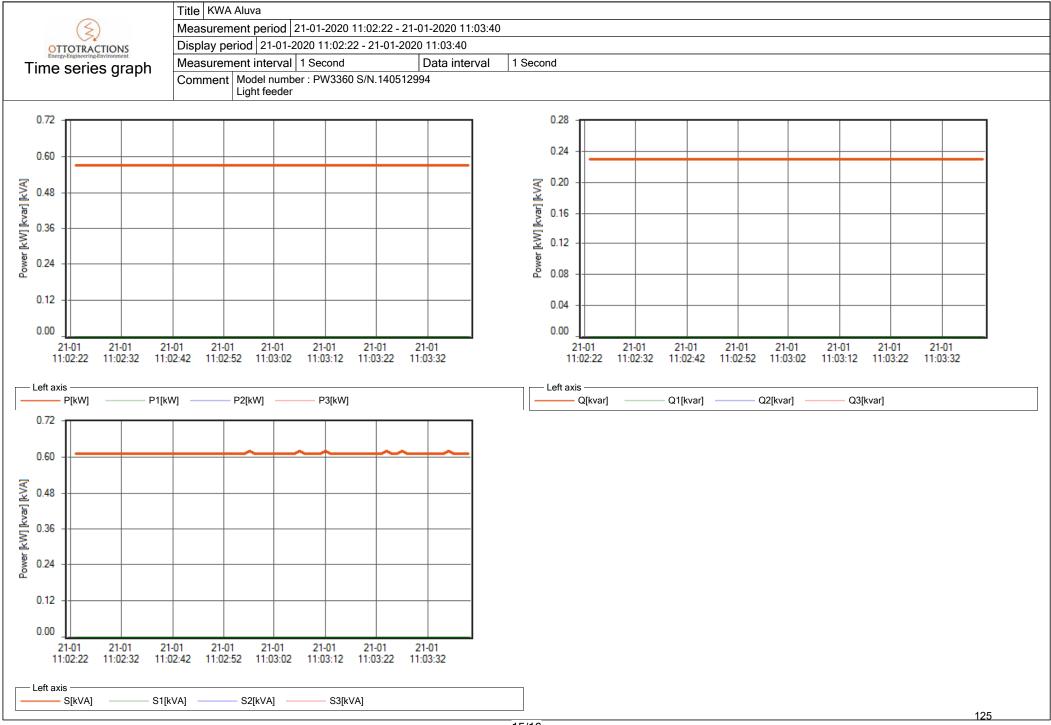


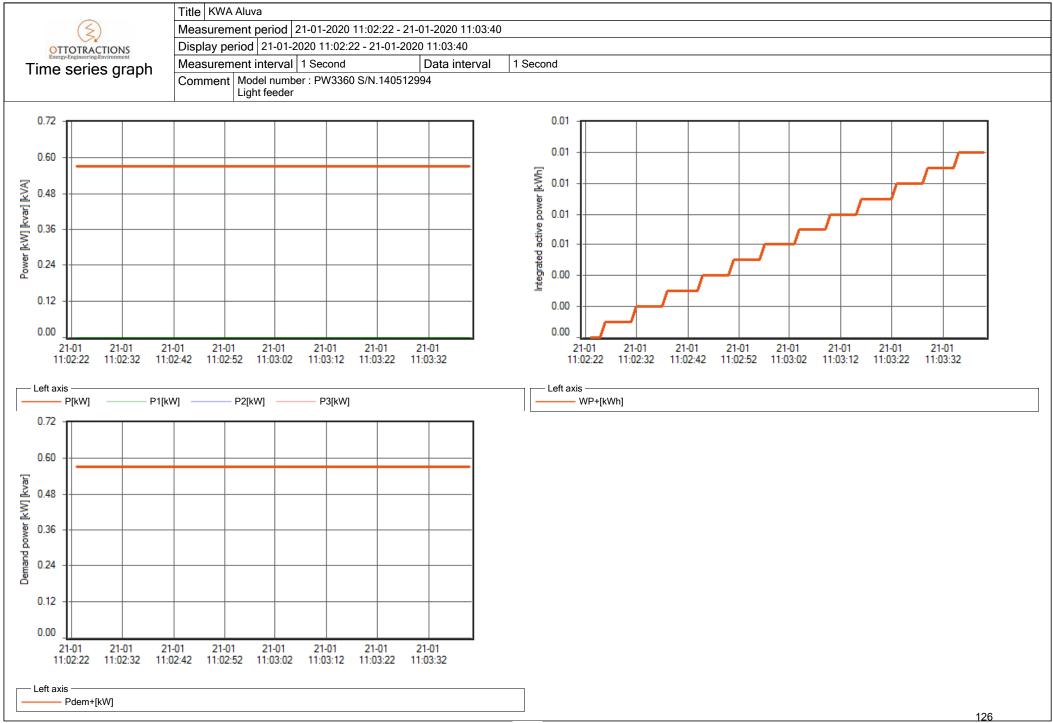


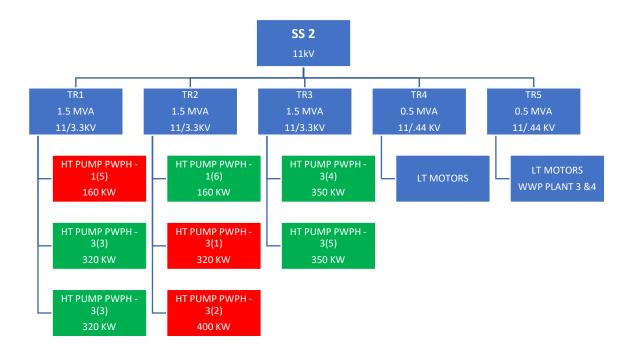


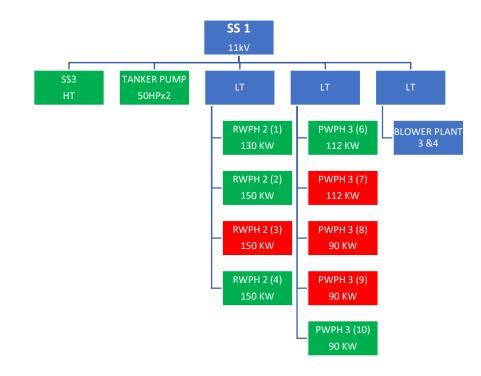


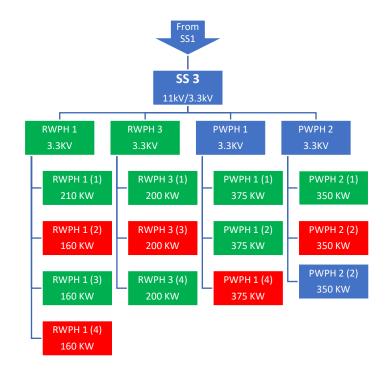


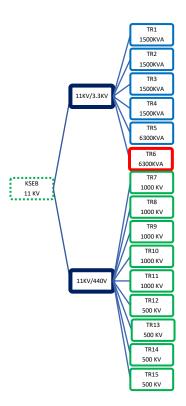


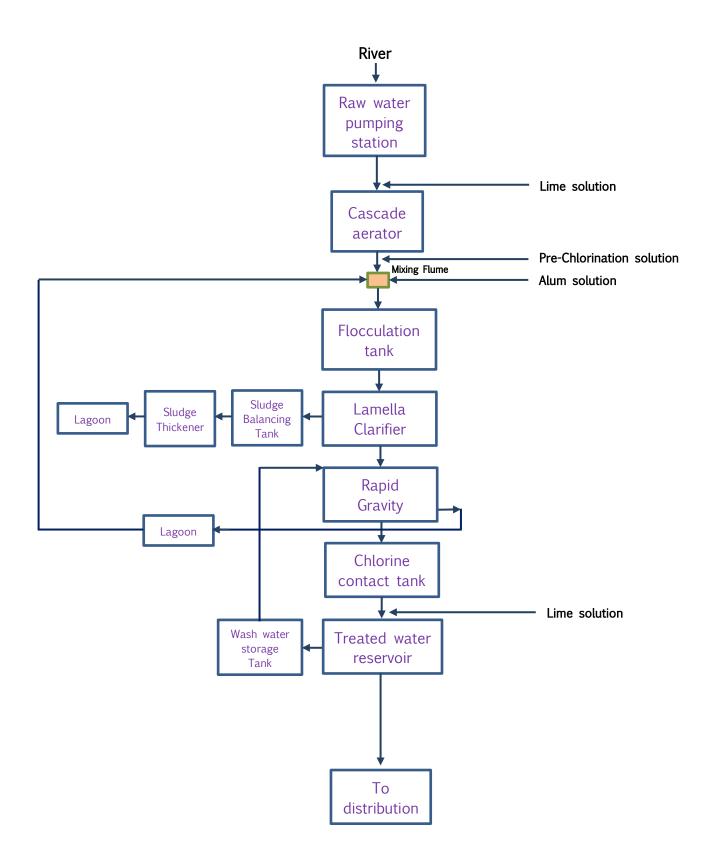


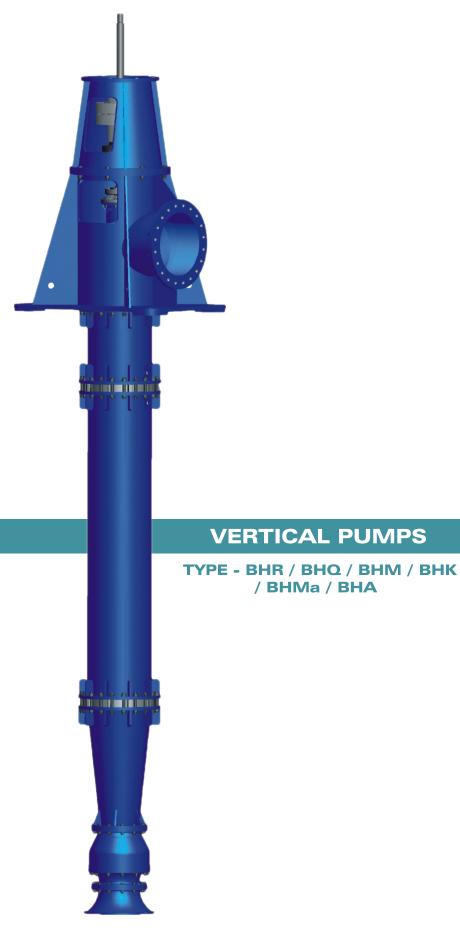


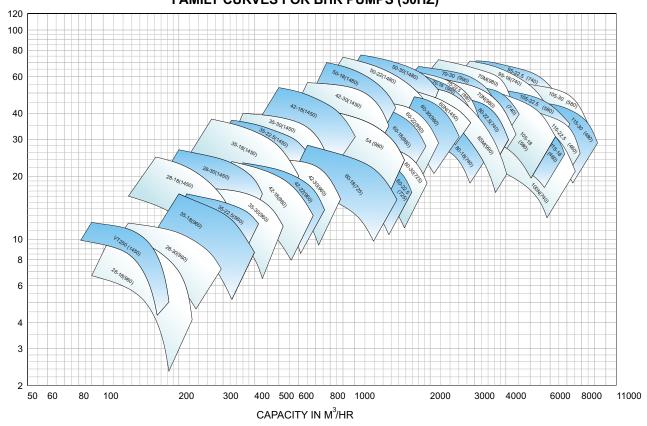


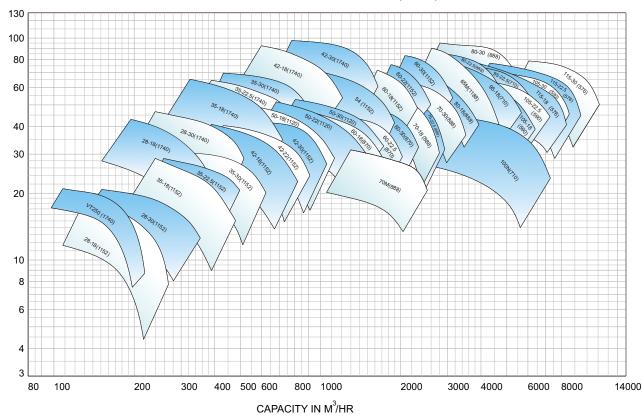

SINGLE LINE DIAGRAM FOR SS2




SINGLE LINE DIAGRAM FOR SS1

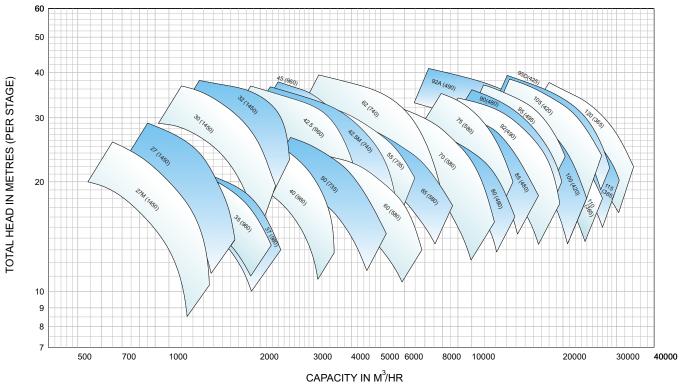

SINGLE LINE DIAGRAM FOR SS3



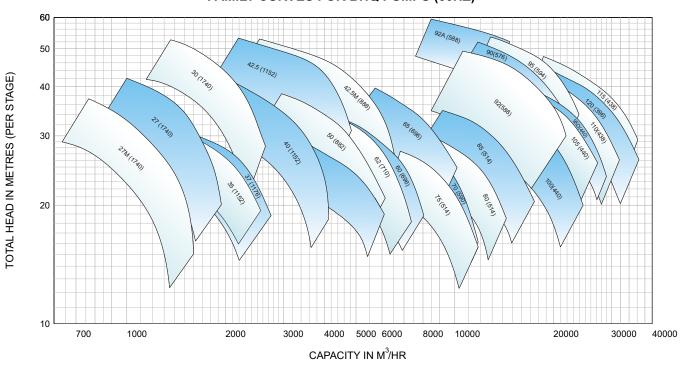

KIRLOSKAR BROTHERS LIMITED

A Kirloskar Group Company

FAMILY CURVES FOR BHR PUMPS (50HZ)


NOTE: FIGURES IN BRACKET INDICATE SPEED IN RPM

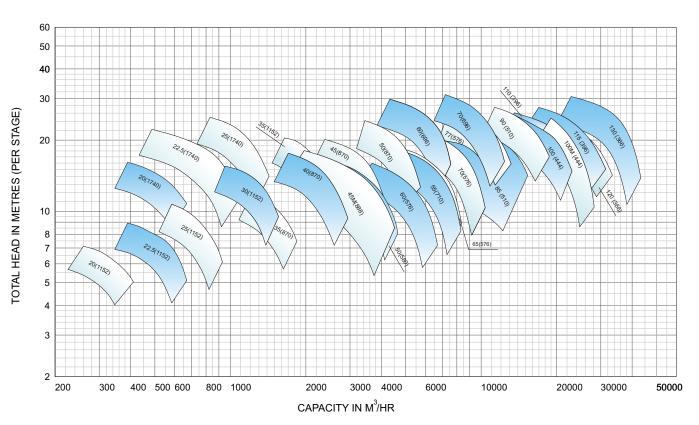
FAMILY CURVES FOR BHR PUMPS (60HZ)


NOTE: FIGURES IN BRACKET INDICATE SPEED IN RPM

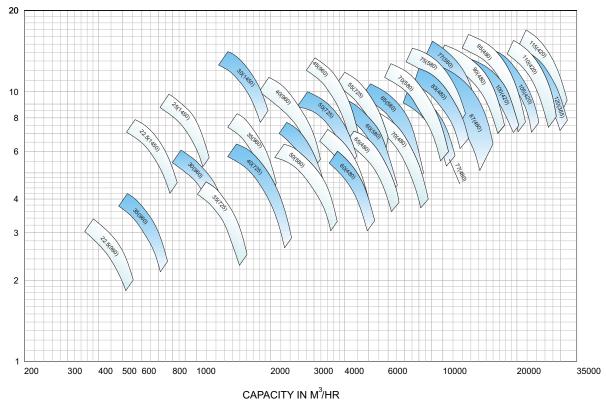
TOTAL HEAD IN METRES (PER STAGE)


FAMILY CURVES FOR BHQ PUMPS (50HZ)

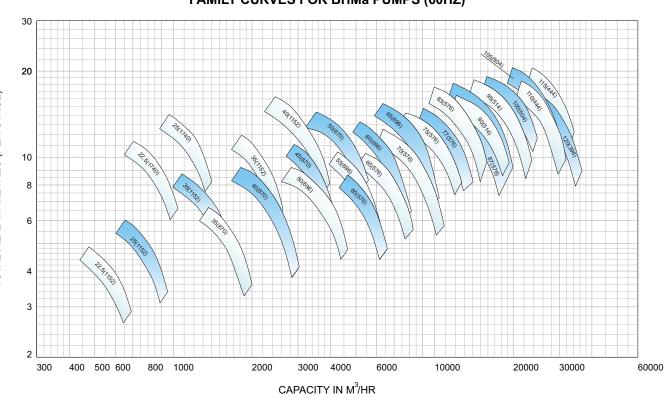
NOTE: FIGURES IN BRACKET INDICATE SPEED IN RPM


FAMILY CURVES FOR BHQ PUMPS (60HZ)

NOTE: FIGURES IN BRACKET INDICATE SPEED IN RPM


FAMILY CURVES FOR BHM PUMPS (50HZ)

NOTE: FIGURES IN BRACKET INDICATE SPEED IN RPM


FAMILY CURVES FOR BHM PUMPS (60HZ)

NOTE: FIGURES IN BRACKET INDICATE SPEED IN RPM

FAMILY CURVES FOR BHMa PUMPS (50HZ)

NOTE: FIGURES IN BRACKET INDICATE SPEED IN RPM

FAMILY CURVES FOR BHMa PUMPS (60HZ)

NOTE: FIGURES IN BRACKET INDICATE SPEED IN RPM

TOTAL HEAD IN METRES (PER STAGE)

ABOUT KBL

Kirloskar Brothers Limited (KBL) is a world class pump manufacturing company with expertise in engineering and manufacture of systems for fluid management. Established in 1888 and incorporated in 1920, KBL is the flagship company of the \$ 2.1 billion Kirloskar Group. KBL, a market leader, provides complete fluid management solutions for large infrastructure projects in the areas of water supply, power plants, irrigation, oil & gas and marine & defence. We engineer and manufacture industrial, agriculture and domestic pumps, valves and hydro turbines.

In 2003, KBL acquired SPP Pumps, United Kingdom and established SPP INC, Atlanta, USA, as a wholly owned subsidiary of SPP, UK to expand its international presence. In 2007, Kirloskar Brothers International B.V., The Netherlands and Kirloskar Brothers (Thailand) Ltd., a wholly owned subsidiary in Thailand, were incorporated. In 2008, KBL incorporated Kirloskar Brothers Europe B.V. (Kirloskar Pompen B.V. since June 2014), a joint venture between Kirloskar International B.V. and Industrial Pump Group, The Netherlands. In 2010, KBL further consolidated its global position by acquiring Braybar Pumps, South Africa. SPP MENA was established in Egypt in 2012. In 2014, KBL acquired SyncroFlo Inc., the largest independent fabricator of commercial and municipal domestic water booster pumps.

To further strengthen its global position, in 2015, Kirloskar Pompen B.V. acquired Rodelta Pumps International, The Netherlands.

KBL has joint venture cooperation with Ebara, Japan since 1988 for the manufacture of API 610 standard pumps. Kirloskar Corrocoat Private Limited is a joint venture cooperation with Corrocoat, UK since 2006. KBL acquired The Kolhapur Steel Limited in 2007 and Hematic Motors in 2010.

KBL has eight manufacturing facilities in India at Kirloskarvadi, Dewas, Kondhapuri, Shirwal, Sanand, Kaniyur, Kolhapur and Karad. In addition, KBL has global manufacturing and packaging facilities in Egypt, South Africa, Thailand, The Netherlands, United Arab Emirates, United Kingdom and United States of America. KBL has 12,700 channel partners in India and 80 overseas and is supported by best-in-class network of Authorised Centres and Authorised Refurbishment Centres across the country.

All the manufacturing facilities at KBL are certified for ISO 9001, ISO 14001, ISO 50001, BS OHSAS 18001 and SA8000. In addition, the Kirloskarvadi plant is also certified for N & NPT Stamp. KBL's corporate office in Pune is certified for ISO 9001 & Sa8000.

The factories deploy Total Quality Management tools using European Foundation for Quality Management (EFQM) model. The Kirloskarvadi plant of KBL is a state-of-the-art integrated manufacturing facility having Asia's largest hydraulic research centre with testing facility up to 5000 kW and 50,000 m^3/hr .

KBL is the ninth pump manufacturing company in the world to be accredited with the N and NPT certification by American Society of Mechanical Engineers (ASME).

Pumps | Valves | Hydro Turbines | Turnkey Projects

Water Resource Management | Irrigation | Power | Industry | Oil & Gas | Marine & Defence | Building & Construction | | Distribution (Small Pumps) | Valves | Customer Service & Spares

KIRLOSKAR BROTHERS LIMITED A Kirloskar Group Company

Registered Office: Udyog Bhavan, Tilak Road , Pune 411002. Tel: +91(20)24440770 Global Headquarters: "Yamuna", Survey No. 98/(3.7), Baner, Pune 411045. Tel: +91(20)27214444 Email: marketing@kbl.co.in, Website: www.kirloskarpumps.com, CIN No.: L29113PN1920PLC000670

Kirloskar Brothers Limited reserve the right to make alteration from time to time and such our products / equipments may differ from that detail in this publication. For latest information you may get in touch with our Regional Sales Offices.

JYOTI Vertical Turbine Pumps (oil & water-lubricated)

Manufactured, designed and made the First Vertical Turbine (VT) Pump in India, way back in 1942

ISO 9001:2015 || TUV INDIA

APPLICATION

Pumps for

- irrigation
- urban & rural water supply
- Cooling tower
- Fire fighting
- Flood control
- Mine dewatering
- Thermal power stations
- Condensate extraction
- General & process water in industries
- Oil field water services and a hoast of other needs.

RANGE

Bowl sizes150 mm to 600 mmCapacity200 lpm to 33200 lpmHeadupto 225 mtsFor higher capacities refer to us.

SPECIAL DESIGN FEATURES

- Heavy wall cast iron bowls & cast iron / Stainless Steel impellers provided for maximum operating life, under ardous Indian conditions.
- Impeller shafts of stainless steel
- Column pipes and line shafts are machined and threaded on double ended special purpose machines in single setting ensuring concentricity.
- All shaft couplings in water lubricated pumps are made of stainless steel for extra-long life.

CONSTRUCTIONAL FEATURES

'JYOTI' VT pumps are offered in non-pull out construction as a standard design. The pump can be supplied for coupling with vertical hollow shaft motors or vertical solid shaft motors. Also for surface discharge or underground discharge.

BOWLS

Standard bowls are made of close grained cast iron. The diffuser vanes are cast integrally.

IMPELLERS

Impellers are closed or semi-open type, statically and dynamically balanced for vibration-free operation. They are secured to the impeller shaft with tapered lock collects or keys & split rings. The impeller position can be adjusted vertically by means of impelleradjusting nut provided in the drive.

IMPELLER SHAFT

Impeller shaft is of stainless steel, accurately ground to close tolerances. The shaft is supported by bearings above and below each impeller.

COLUMN PIPES

Column pipes are normally supplied in nominal lengths of 3.0m, 1.5m and 0.75m pipes of non-standard lengths also can be supplied on request.

LINE SHAFTS

Line shafts are of high grade carbon steel, ground to close tolerances and threaded concentrically at the ends. Available in nominal lengths of 3.0m, 1.5m and 0.75m and in non-standard lengths to suit specific site conditions. Line shaft in stainless steel and suitable for muff couplings also can be supplied, if required.

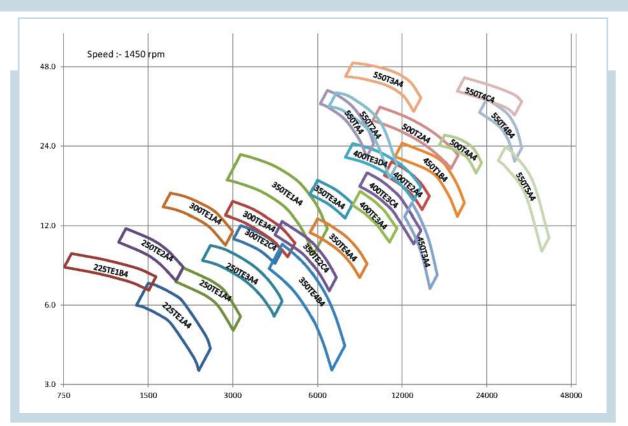
LINE SHAFT BEARINGS

Made of bronze for oil lubricated pumps and Nitrile Rubber for water lubricated pumps.

SHAFT ENCLOSING TUBES

(for oil-lubricated pump)

These heavy duty steel tubes protect the line shafts from corrosion and foreign materials and support the line shaft bearings. The tubes are threaded concentrically in one setting at both ends. Available in different lengths, as line shafts.


DISCHARGE HEAD

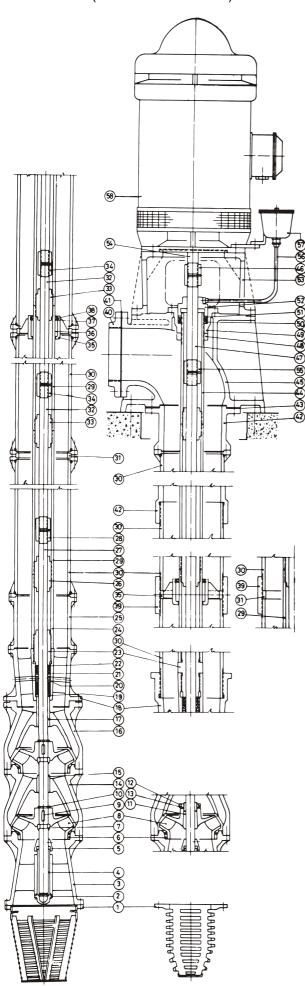
Standard construction in cast iron. Fabricated ones also can be supplied on request. Pump can be supplied with surface or underground discharge to suit specific site conditions.

DRIVES

Electrical motors with vertical hollow shaft or vertical solid shaft are normally used. Alternatively right angle gear head with diesel engine also can be used.

FAMILY CURVE FOR STANDARD VT PUMPS (225 to 550 mm)

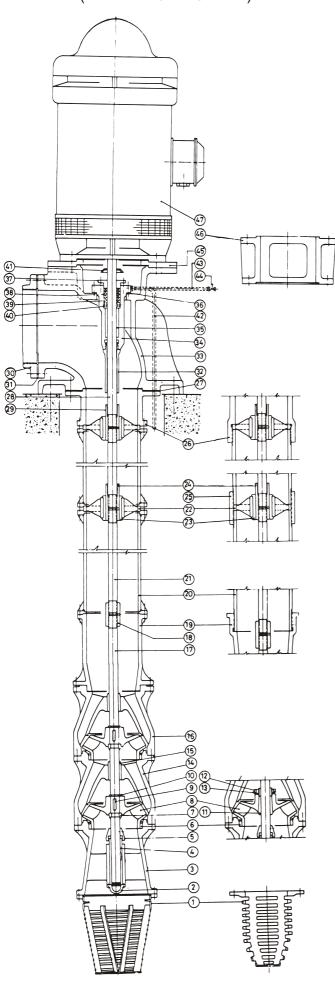
STANDARD MATERIAL OF CONSTRUCTION


OIL LUBRICATED / WATER LUBRICATED / FORCE LUBRICATED PUMP

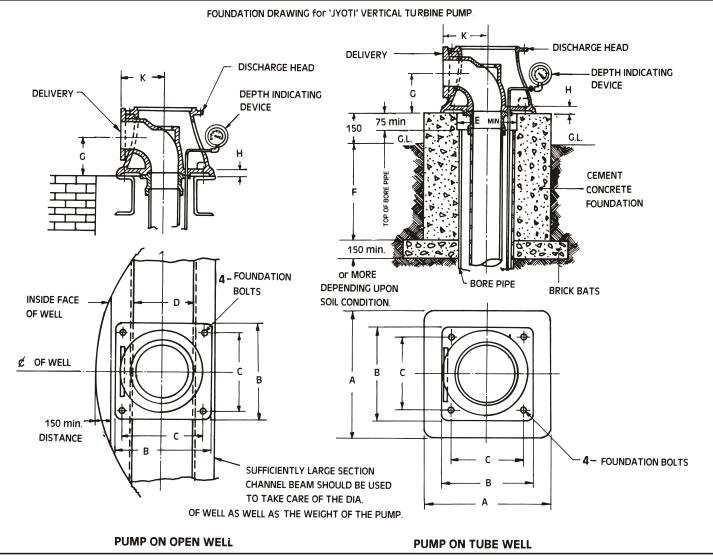
S.NO.	PART DESCRIPTION	MATERIAL	SPECIFICATION
1	STAINER	M.S.	IS : 2062 St.42-S
2	SUCTION CASE	CAST IRON	IS : 210 Gr FG-200
3	SUCTION CASE BEARING	BRONZE	IS : 318 Gr LTB2
4	IMPELLER SEAL RING	CAST IRON	IS : 210 Gr FG-200
		BRONZE	IS : 318 Gr LTB2
5	IMPELLER	CAST IRON	IS : 210 Gr FG-200/260
		BRONZE	IS : 318 Gr LTB2
6	BOWL	CAST	IRON IS : 210 Gr FG-260
7	IMPELLER SHAFT	ST. STEEL	ASTM A276 SS 410
8	DISCHARGE CASE	CAST IRON	IS : 210 Gr FG-200/260
9	COLUMN PIPE ADOPTOR	CAST IRON	IS : 210 Gr FG-200/260
10	GUIDE SPIDER/BEARING HOLDER	CAST IRON	IS : 210 Gr FG-200/260
11	COLUMN PIPE	ERW STEEL	IS : 1239 Class C / IS : 1978
		M.S. FABRICATED	IS : 2062 St.42-S
12	SHAFT ENCLOSING TUBE (OL)	STEEL	IS : 1239 Class C / IS : 1978
13	LINE SHAFT CARBON	STEEL	IS: 1570 C40 / ASTM A276 SS 410
14	LINE SHAFT COUPLING (OL) CARBON	STEEL	IS: 1570 C40 / ASTM A276 SS 410
15	LINE SHAFT COUPLING (WL) ST.	STEEL	ASTM A276 SS 410
16	LINE SHAFT BEARING (OL)	BRONZE	IS : 318 Gr LTB2
17	LINE SHAFT BEARING (WL)	NITRILE RUBBER	SHORE HARDNESS 60-65
18	TOP COLUMN FLANGE	CAST IRON	IS : 210 Gr FG-200/260
19	DISCHARGE HEAD BODY	CAST IRON	IS : 210 Gr FG-200/260
		M.S. FABRICATED	IS : 2062 St.42-S
20	HEAD SHAFT CARBON	STEEL	IS: 1570 C40 / ASTM A276 SS 410
21	STUFFING BOX	CAST IRON	IS : 210 Gr FG-200/260
22	GLAND	CAST IRON	IS : 210 Gr FG-200/260
23	MOTOR SKIRT	CAST IRON	IS : 210 Gr FG-200/260
		M.S. FABRICATED	IS : 2062 St.42-S
24	MOTOR	VERTICAL HOLLOW OR	IS: 325
		SOLID SHAFT	

NOTE : Material of Construction mentioned above are our standard ones, other materials to suit specific site conditions can be supplied on request. **OPTIONAL ACCESSORIES**

• Foundation bolts • Sole plate • Companion flanges.


'JYOTI' VERTICAL TURBINE PUMP (OIL-LUBRICATED)

Sr. No. PART NAME


- 58 Vertical Hollow Shaft Motor
- 57 Automatic Lubricator Assly
- 56 Oiling Pipe
- 55 Head Shaft Coupling
- 54 Head Shaft
- 53 Motor Skirt or Adapting Plate
- 52 Gland
- 51 Gland Packing Ring
- 50 Gland Packing
- 49 Tube Tension Plate
- 48 Check Nut
- 47 Head Shaft Extension
- 46 Head Shaft Extension Coupling
- 45 Discharge Head Body
- 44 Tube Tension Nipple
- 43 Top Column Flange Gasket
- 40 Delivery Flange (Up to D-150 Dis-Head)
- 39 Column Pipe Coupling
- 38 Circlip
- 37 Rubber Guide Ring Washer
- 36 Rubber Guide Ring
- 35 Guide Spider
- 34 Line Shaft Coupling
- 33 Line Shaft Bearing32 Line Shaft
- 31 Column pipe spacer
- 30 Column Pipe Flanged or Threaded
- 29 Shaft Enclosing Tube
- 28 Impeller Shaft Coupling
- 27 Impeller Shaft
- 26 Impeller Shaft Bearing
- 25 Column Pipe Adoptor
- 24 Tubing Adaptor
- 23 Discharge Case Bearing
- 22 Impeller Shaft Packing Ring
- 21 Impeller Shaft Packing
- 20 Lantern Ring
- 19 Distance Piece
- 18 Discharge Case Flange or Threaded
- 17 Top Bowl Bearing
- 16 Top Bowl
- 15 Bowl Bearing
- 14 Bowl
- 13 Impeller Collect Nut Washer
- 12 Impeller Collet Nut
- 11 Impeller Collet
- 10 Circlip
- 9 Impeller Key
- 8 Impeller
- 7 Impeller Holding Split Ring
- 6 Impeller Seal Ring
- 5 Suction Case Sand Collar
- 4 Suction Case Bearing
 - 3 Suction Case
 - 2 Suction Case Plug
 - 1 Suction Pipe Strainer

'JYOTI' VERTICAL TURBINE PUMP (WATER-LUBRICATED)

Sr. No. PART NAME

- 46 Vertical Hollow Shaft Motor
- 45 Adapting Plate or Distance Piece
- 44 Valve
- 43 Water Lubricating Tube
- 42 Water Leakage Tube
- 41 Water Deflector
- 40 Lantern Ring
- 39 Gland Packing
- 38 Gland Packing Ring
- 37 Gland
- 36 Stuffing Box Gasket
- 35 Stuffing Box Bush
- 34 Stuffing Box
- 33 Discharge Head Body
- 32 Stilling Pipe
- 31 Delivery Flange Gasket
- 30 Delivery Flange (Up to D-150 Dis-Head)
- 29 Head Shaft Coupling
- 28 Head Shaft
- 27 Top Column Flange Gasket
- 26 Top Column Flange -Flanged or Threaded
- 25 Column Pipe Coupling Threaded
- 24 Line Shaft Coupling
- 23 Rubber Bearing
- 22 Brg. Holder Flanged or Threaded
- 21 Line Shaft
- 20 Column Pipe flanged or Threaded
- 19 Col. Pipe flanged or Threaded or Threaded
- 18 Impeller Shaft Coupling
- 17 Impeller Shaft
- 16 Top Bowl
- 15 Bowl Bearing
- 14 Bowl
- 13 Impeller Collet Nut washer
- 12 Impeller Collet Nut
- 11 Impeller Collet
- 10 Circlip
- 9 Impeller Key
- 8 Impeller
- 7 Impeller Holding Split Ring
- 6 Impeller Seal Ring
- 5 Suction Case Sand Collar
- 4 Suction Case Bearing
- 3 Suction Case
- 2 Suction Case Plug
- 1 Suction pipe Strainer

Discharge													Foundation		
Head	А	В	С	D	E	F	G	Н	K	L	Μ	Ν	Dia	No.	Length
D/DS 100	600	400	335	260	295	460	156	30	190	4	18	178	M 16	4	250
D/DS 150	640	440	375	295	330	460	203	35	215	8	18	235	M 20	4	300
D/DS 200	775	565	485	410	410	610	235	45	285	8	18	292	M 24	4	500
D/DS 250	900	690	600	500	520	610	270	60	350	8	22	356	M 24	4	500
D/DS 300	900	700	600	500	520	610	320	60	355	12	22	406	M 24	4	500
D/DS 350	1050	850	740	625	590	700	365	60	430	12	24	470	M 24	4	500
D/DS 400	1050	850	740	625	590	700	380	60	430	12	24	521	M 24	4	500

All dimensions are in mm except otherwise stated.

Note : Delivery flanges are acording to BS : 10, Table "E"

FOR FURTHER ENQUIRIES PLEASE CONTACT	BRANCH OFFICES		
PUMP DIVISION Nanubhai Amin Marg, Industrial Area,	Bangalore	: 35/3, 2nd Floor, Novelty Mansion, 2nd Cross, IV Block, Kumarapark West, Bangalore-560 020. Telefax : 080-23562248 E-mail : bangalore@jyoti.com	In keeping with the technological strides the world is making in
P.O. Chemicals Industries,	Chennai	: VEE DEE YEM Complex, 1st Floor, 270, Lloyds Road, Royapettah, Chennai 600014, Ph. : 044-28131754, Fax : 044-28133178, E-mail : chennai@jyoti.com	the engineering field, we introduce changes in the
Vadodara-390 003 (India). Phones : +91-265-3054444	Indore	: E-mail : indore@jyoti.com (Resident Representative (M) 09303211776	design of our
Fax : +91-265-2281871	Kolkata	: 45, Jhowtalla Road, Syed Amir Ali Avenue, Kolkata-700 019, Ph. : 033-22902056, Fax : 033-22875267, E-mail : kolkata@jyoti.com	products. Hence, the products as actually supplied might have
2280671 E-mail : pumps@jyoti.com	Mumbai	: Narsinh Sadan, Flat No. 102, 1st Floor, 1st Road, Golibar, Santacruz (East), Mumbai-400 055. Ph. : 022-26134403 (D), 26122848, E-mail : mumbai@jyoti.com	features varying here from. The word 'Jyoti' and
Website : www.jyoti.com	New Delhi	: 7, Jantar Mantar Road, New Delhi-110 001. Ph. : 011-23340576, E-mail : delhi@jyoti.com	'Jyoti' logo are the
	Secundraba	d : 5-4-187/7, 1st Floor, Karbala Maidan, M. G. Road, Secundarabad-500 003. Ph. : 040-27544587 (D), 2754708 Fax : 040-27543673, E-mail : jyotisec@jyoti.com	registered trademarks of Jyoti Ltd. Vadodara.

this Page is Intentionally Rept Blank